curobo.rollout.dynamics_model.kinematic_model module¶
- class KinematicModelState(
- state_seq: curobo.types.state.JointState,
- ee_pos_seq: torch.Tensor | None = None,
- ee_quat_seq: torch.Tensor | None = None,
- robot_spheres: torch.Tensor | None = None,
- link_pos_seq: torch.Tensor | None = None,
- link_quat_seq: torch.Tensor | None = None,
- lin_jac_seq: torch.Tensor | None = None,
- ang_jac_seq: torch.Tensor | None = None,
- link_names: List[str] | None = None,
Bases:
Sequence
- state_seq: JointState¶
- property link_pose¶
Use link_poses instead.
- Type:
Deprecated
- property link_poses¶
- _abc_impl = <_abc._abc_data object>¶
- _is_protocol = False¶
- count(
- value,
- index(
- value[,
- start[,
- stop,]]
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
- class KinematicModelConfig(
- robot_config: curobo.types.robot.RobotConfig,
- dt_traj_params: curobo.rollout.dynamics_model.kinematic_model.TimeTrajConfig,
- tensor_args: curobo.types.base.TensorDeviceType,
- vel_scale: float = 1.0,
- state_estimation_variance: float = 0.0,
- batch_size: int = 1,
- horizon: int = 5,
- control_space: curobo.types.enum.StateType = <StateType.ACCELERATION: 2>,
- state_filter_cfg: Optional[curobo.util.state_filter.FilterConfig] = None,
- teleport_mode: bool = False,
- return_full_act_buffer: bool = False,
- state_finite_difference_mode: str = 'BACKWARD',
- filter_robot_command: bool = False,
Bases:
object
- robot_config: RobotConfig¶
- dt_traj_params: TimeTrajConfig¶
- tensor_args: TensorDeviceType¶
- state_filter_cfg: FilterConfig | None = None¶
- static from_dict(
- data_dict_in,
- robot_cfg: Dict | RobotConfig,
- tensor_args=TensorDeviceType(device=device(type='cuda', index=0), dtype=torch.float32, collision_geometry_dtype=torch.float32, collision_gradient_dtype=torch.float32, collision_distance_dtype=torch.float32),
- class KinematicModel(
- kinematic_model_config: KinematicModelConfig,
Bases:
KinematicModelConfig
- update_traj_dt(
- dt: float | Tensor,
- base_dt: float | None = None,
- max_dt: float | None = None,
- base_ratio: float | None = None,
- get_next_state( )¶
Does a single step from the current state Args: curr_state: current state act: action dt: time to integrate Returns: next_state TODO: Move this into tensorstep class?
- tensor_step(
- state: JointState,
- act: Tensor,
- state_seq: JointState,
- state_idx: Tensor | None = None,
Args: state: [1,N] act: [H,N] todo: Integration with variable dt along trajectory
- robot_cmd_tensor_step(
- state: JointState,
- act: Tensor,
- state_seq: JointState,
- state_idx: Tensor | None = None,
Args: state: [1,N] act: [H,N] todo: Integration with variable dt along trajectory
- update_cmd_batch_size(
- batch_size,
- update_batch_size(
- batch_size,
- force_update=False,
- forward(
- start_state: JointState,
- act_seq: Tensor,
- start_state_idx: Tensor | None = None,
- integrate_action(act_seq)¶
- integrate_action_step(
- act,
- dt,
- filter_robot_state(
- current_state: JointState,
- get_robot_command(
- current_state: JointState,
- act_seq: Tensor,
- shift_steps: int = 1,
- state_idx: Tensor | None = None,
- property action_bound_lows¶
- property action_bound_highs¶
- property init_action_mean¶
- property retract_config¶
- property cspace_distance_weight¶
- static from_dict(
- data_dict_in,
- robot_cfg: Dict | RobotConfig,
- tensor_args=TensorDeviceType(device=device(type='cuda', index=0), dtype=torch.float32, collision_geometry_dtype=torch.float32, collision_gradient_dtype=torch.float32, collision_distance_dtype=torch.float32),
- state_filter_cfg: FilterConfig | None = None¶
- robot_config: RobotConfig¶
- dt_traj_params: TimeTrajConfig¶
- tensor_args: TensorDeviceType¶
- property null_space_weight¶
- property max_acceleration¶
- property max_jerk¶
- property action_horizon¶
- get_state_bounds()¶
- get_action_from_state(
- state: JointState,
- get_state_from_action(
- start_state: JointState,
- act_seq: Tensor,
- state_idx: Tensor | None = None,
Compute State sequence from an action trajectory
- Parameters:
start_state (JointState) – _description_
act_seq (torch.Tensor) – _description_
- Returns:
_description_
- Return type: