curobo.types.state module¶
- class FilterCoeff(
- position: 'float' = 0.0,
- velocity: 'float' = 0.0,
- acceleration: 'float' = 0.0,
- jerk: 'float' = 0.0,
Bases:
object
- class State¶
Bases:
Sequence
- blend(
- coeff: FilterCoeff,
- new_state: State,
- to(
- tensor_args: TensorDeviceType,
- get_state_tensor()¶
- apply_kernel(kernel_mat)¶
- clone()¶
- _abc_impl = <_abc._abc_data object>¶
- _is_protocol = False¶
- count(
- value,
- index(
- value[,
- start[,
- stop,]]
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
- class JointState(position: 'Union[List[float], T_DOF]', velocity: 'Union[List[float], T_DOF, None]' = None, acceleration: 'Union[List[float], T_DOF, None]' = None, joint_names: 'Optional[List[str]]' = None, jerk: 'Union[List[float], T_DOF, None]' = None, tensor_args: 'TensorDeviceType' = TensorDeviceType(device=device(type='cuda', index=0), dtype=torch.float32, collision_geometry_dtype=torch.float32, collision_gradient_dtype=torch.float32, collision_distance_dtype=torch.float32), aux_data: 'dict' = <factory>)¶
Bases:
State
- tensor_args: TensorDeviceType = TensorDeviceType(device=device(type='cuda', index=0), dtype=torch.float32, collision_geometry_dtype=torch.float32, collision_gradient_dtype=torch.float32, collision_distance_dtype=torch.float32)¶
- static from_numpy(
- joint_names: List[str],
- position: ndarray,
- velocity: ndarray | None = None,
- acceleration: ndarray | None = None,
- jerk: ndarray | None = None,
- tensor_args: TensorDeviceType = TensorDeviceType(device=device(type='cuda', index=0), dtype=torch.float32, collision_geometry_dtype=torch.float32, collision_gradient_dtype=torch.float32, collision_distance_dtype=torch.float32),
- apply_kernel(kernel_mat)¶
- to(
- tensor_args: TensorDeviceType,
- clone()¶
- blend(
- coeff: FilterCoeff,
- new_state: JointState,
- get_state_tensor()¶
- static from_state_tensor(
- state_tensor,
- joint_names=None,
- dof=7,
- stack(
- new_state: JointState,
- static from_list(
- position,
- velocity,
- acceleration,
- tensor_args: TensorDeviceType(),
- copy_at_index(
- in_joint_state: JointState,
- idx: int | Tensor,
Copy joint state to specific index
- Parameters:
in_joint_state (JointState) – _description_
idx (Union[int,torch.Tensor]) – _description_
- copy_data(
- in_joint_state: JointState,
Copy data from in_joint_state to self
- Parameters:
in_joint_state (JointState) – _description_
- _same_shape(
- new_js: JointState,
- copy_(
- in_joint_state: JointState,
- static zeros( )¶
- detach()¶
- get_ordered_joint_state( ) JointState ¶
Return joint state with a ordered joint names :param ordered_joint_names: _description_ :type ordered_joint_names: List[str]
- Returns:
_description_
- Return type:
_type_
- get_augmented_joint_state(
- joint_names,
- lock_joints: JointState | None = None,
- append_joints(
- js: JointState,
- property shape¶
- _abc_impl = <_abc._abc_data object>¶
- _is_protocol = False¶
- count(
- value,
- index(
- value[,
- start[,
- stop,]]
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
- jit_js_scale( )¶
- jit_get_index( )¶
- fn_get_index( )¶