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Figure 1: We present an approach to perform collision-free motion generation for a manipulator to move
from a start configuration to a desired gripper pose. Few instances of using our approach is shown here,
where the Franka Panda robot moves a grasped object around obstacles to place in a target location. We
leverage parallel computing to generate motions within 30ms.

Abstract

This paper explores the problem of collision-free motion generation for manipulators by
formulating it as a global motion optimization problem. We develop a parallel optimiza-
tion technique to solve this problem and demonstrate its effectiveness on massively par-
allel GPUs. We show that combining simple optimization techniques with many parallel
seeds leads to solving difficult motion generation problems within 50ms on average, 60×
faster than state-of-the-art (SOTA) trajectory optimization methods. We achieve SOTA
performance by combining L-BFGS step direction estimation with a novel parallel noisy
line search scheme and a particle-based optimization solver. To further aid trajectory
optimization, we develop a parallel geometric planner that plans within 20ms and also in-
troduce a collision-free IK solver that can solve over 7000 queries/s. We package our con-
tributions into a state of the art GPU accelerated motion generation library, cuRobo and
release it to enrich the robotics community. Additional details are available at curobo.org.

∗Equal Contribution.

https://curobo.org
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1 Introduction

Safe navigation is fundamental to robotics [1], requiring robots to have a robust global motion generation
system to traverse any environment structure encountered at deployment. Motion generation for high-
dimensional systems is extremely challenging as satisfying complex constraints and minimizing cost terms
in a very large C-Space is computationally expensive. Manipulators, for instance, can have many articu-
lations, complex link geometries, entire goal regions beyond a single configuration, task constraints, and
nontrivial kinematic and torque limitations. There has been a long history of problem decomposition in
this field to mitigate complexity, leading to standard approaches that often first plan collision-free geomet-
ric paths [2, 3] and then smooth those paths for dynamic efficiency [3, 4]. But increasingly, research into the
interconnections between optimization and planning [5–12] has shown that optimization can be a powerful
tool well beyond trajectory smoothing, and trajectory optimization alone now has a breadth of applications
[13–16]. Our modern understanding of this robot navigation problem is that it is a large global motion
optimization problem [17, 18].

The global optimization literature suggests that finding the true global minimum is usually impractical,
but strategies for robustly finding high-performing local minima can be effective [19]. Many strategies
follow the simple pattern of selecting many seed candidates and performing a local optimization for each.
This sample and optimize process can often realize substantial gains by leveraging distributed computation.
However, mostmotion generation systems today remain sequential and slow, following a CPU-based design.
State-of-the-art motion generation solutions take 0.5s to 10s depending on the task’s complexity on modern
CPUs [20]. This run-time is even slower on edge devices that operate under limited power budgets. This
slow and sequential process has resulted in pipelined systems that compute only a single best candidate
seed, which is then passed to an optimizer for local optimization [3]. Such systems fundamentally limit
their ability to find better local optima by betting on a single seed.

The insights used to improve the speed and quality of the solution for global optimization problems may
apply well to the problem of global motion generation. In this work, we present a collection of techniques
and implementations that leverage parallel processing to accelerate motion planning and optimization, and
for running many optimization instances in parallel to robustly address these global optimization problems.
Existing literature supports these algorithmic principles and has shown that (1) the heuristic initialization
for the problem can be effective [9], and (2) many restarts with randomized noise of the initial seed can
dramatically improve performance [21].

In the realm of global motion generation, massively parallel compute is already being used to accelerate
Probabilistic Road Map (PRM) pruning by using an FPGA with special circuits, leading to many orders of
magnitude speedup [22]. However, instead of designing special circuits for motion generation, we leverage
the massively parallel compute available on graphical processing units (GPUs). GPUs have become per-
vasive in both high- and low-powered configurations as they offer energy-efficient and high-throughput
computation platforms, an important requirement for solving parallelizable compute intensive problems.
We show howGPUs also offer programmability and flexibility to map sophisticated computations of motion
optimization to hardware, allowing us to parallelize the entire motion generation pipeline. We achieve high
speedups using GPUs compared to serial implementations in motion generation. While we demonstrate the
benefits of using parallel compute for motion generation using NVIDIA GPUs, the approach is applicable
to other parallel architectures.

Our effort to solve global motion generation starts with parallelizing the core blocks in a robotics stack
– robot kinematics, robot self signed distance (i.e., between a robot’s links), and robot world signed dis-
tance (i.e., world represented by cuboids, meshes, and a depth camera stream). We formalize these functions
to use many threads per query, implement them efficiently in CUDA, and provide them as differentiable
functions in pyTorch, enabling others to also use these functions as the backbone for their own robotic
tasks. We then formulate a continuous collision checking algorithm that only requires a point signed dis-
tance function from the world representation. We then introduce parallel algorithms for numerical opti-
mization and geometric planning, that aid in solving global motion generation. Our main contributions are
summarized as follows:
Performant Kinematics and Signed Distance Kernels: We develop high-performance CUDA kernels
for robot kinematics and signed distance computation which are up to 10,000x faster than existing CPU
based methods.
Differentiable Continuous Collision Checking: Formulate continuous collision checking algorithm
that only needs a point signed distance function (and closest point for gradients) to perform swept collision
checks, enabling use across different world representations from primitives and meshes to occupancy maps.
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Parallel Optimization: We develop a GPU batched L-BFGS optimizer, that uses an approximate parallel
line search scheme, and a particle-based optimizer to solve difficult motion generation problems. Our solver
is 23×, 80×, and 87× faster for inverse kinematics, collision-free inverse kinematics, and collision-free tra-
jectory optimization respectively when compared to existing CPU based solvers.
SOTA IK Solver: Leveraging our performant kernels, we have developed a world-leading inverse kine-
matic solver, that can solve 37000 IK problems per second (23× faster than TracIK [23]) and also solve 7600
collision-free IK problems per second (80× faster than using TracIK + Bullet [24]).
Parallel Geometric Planner: We develop a geometric planner with a parallel steering algorithm to gen-
erate collision-free paths within 20 ms on a modern desktop machine with NVIDIA RTX 4090 and AMD
Ryzen 9 7950x.
Global Motion Generation: Combining our above contributions, we have a global motion generation
pipeline that can plan within 50ms, 60× faster than existing methods (Tesseract).
Validation on a Low-Power Device: We evaluate our GPU-accelerated motion generation stack and ex-
isting CPU-based methods on an NVIDIA Jetson AGX Orin at different power budgets. Results show that
our approach is 28× and 21× faster on average for motion generation problems when the device was set to
60W and 15W budgets, respectively.
cuRobo Library: We developed cuRobo, a suite of GPU-accelerated robotics algorithms, providing SOTA
implementations of robot kinematics, signed distance functions, optimization solvers, geometric planning,
trajectory optimization, and model predictive control. We are releasing this library to enrich roboticists
with the necessary tools to explore large-scale problems in robotics.

2 Motion Generation as Optimization

We define the problem of motion generation as the task of moving from an initial joint configuration 𝜃0 to
a final joint configuration 𝜃𝑇 , at which state a task cost 𝐶 (𝜃𝑇 ) is below a desired threshold. Additionally,
the transition states from 𝜃0 to 𝜃𝑇 must also satisfy system constraints. In this work, we focus on the task
of collision-free motion generation to reach a goal Cartesian pose 𝑋𝑔 ∈ SE(3) with the robot’s end-effector.
Specifically, we want to obtain a joint-space trajectory 𝜃 [0,𝑇 ] that satisfies the robot’s joint limits (position,
velocity, acceleration, jerk), doesn’t collide with itself or the environment, and reaches the goal pose 𝑋𝑔 by
the last timestep 𝑇 .

We formulate this continuous-time motion problem as a time discretized trajectory optimization problem,

argmin
𝜃 [1,𝑇 ]

𝐶task (𝑋𝑔, 𝜃𝑇 ) +
𝑇∑︁

𝑡=1

𝐶smooth (·) (1)

s.t., 𝜃− ⪯ 𝜃𝑡 ⪯ 𝜃+,∀𝑡 ∈ [1,𝑇 ] (2)

9𝜃− ⪯ 9𝜃𝑡 ⪯ 9𝜃+,∀𝑡 ∈ [1,𝑇 ] (3)

:𝜃− ⪯ :𝜃𝑡 ⪯ :𝜃+,∀𝑡 ∈ [1,𝑇 ] (4)

;𝜃− ⪯ ;𝜃𝑡 ⪯ ;𝜃+,∀𝑡 ∈ [1,𝑇 ] (5)

9𝜃𝑇 , :𝜃𝑇 , ;𝜃𝑇 = 0 (6)

𝐶𝑟 (𝐾𝑠 (𝜃𝑡 )) ⪯ 0,∀𝑡 ∈ [1,𝑇 ] (7)

𝐶𝑤 (𝐾𝑠 (𝜃𝑡 )) ⪯ 0,∀𝑡 ∈ [1,𝑇 ] (8)

where 𝐶𝑠𝑚𝑜𝑜𝑡ℎ (·) is a cost term that encourages smooth robot behavior. Joint limit constraints are enabled
by Eq.2-5. We also constrain the robot to have zero velocity, acceleration and jerk at the final timestep by
constraints in Eq. 6. A detailed discussion on this optimization problem and the formulation of cost terms
is available in Appendix. A. We discuss the collision avoidance constraints Eq.7, and Eq.8 in Sec. 3.

A good initial seed can speedup convergence in the above defined trajectory optimization problem. One
common way [14] to initialize the seed is to first optimize only for the terminal joint configuration 𝜃𝑇
and then initialize the trajectory with a linear interpolation from the start configuration 𝜃0 to the solved
terminal configuration (interpolating through a predefined waypoint has also shown to be helpful [9]). In
our problem setting of reaching a goal pose 𝑋𝑔, the terminal state optimization problem boils down to a
collision-free inverse kinematics (IK) problem containing the pose cost, the collision constraints Eq. 8-Eq. 7
and the joint limit constraint Eq. 2. We hence first solve for collision-free IK, followed by seed generation,
and then trajectory optimization. Once we run trajectory optimization, we find an optimal dt by scaling the
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Figure 2: Our approach to global motion generation takes as input a goal pose 𝑋𝑔, initial joint configura-
tion 𝜃0, and outputs a timestep optimized, collision-free trajectory 𝜃 [0,𝑇 ]. We solve this by first running
many instances of collision-free IK, followed by generating seeds for trajectory optimization by either lin-
early interpolating between start and IK solutions, passing through a retract config, or using our geometric
planner. We then run trajectory optimization on many seeds in parallel to obtain a collision-free trajec-
tory 𝜃 ∗[0,𝑇 ] , which is then re-optimized with an estimated 𝑑𝑡 to get a timestep optimized collision-free

trajectory 𝜃 [0,𝑇 ] . Our numerical optimization performs a few iterations of particle-based optimization to
move the seed to a good region follow by L-BFGS to quickly converge to the minimum.

trajectory’s velocity, acceleration, or jerk to the robot’s limits and rerun trajectory optimization with this
new dt to get the final result (see A.4). Our overall approach is illustrated in Figure 2.

3 Kinematics & Collision Avoidance

Collision avoidance is a critical component of motion generation as the robot needs to be able to avoid col-
liding with itself (self-collision) and with the world for safe operation. A standard approach to computing
collisions involves transforming the robot’s geometries (often represented as meshes) based on the current
joint configuration (forward kinematics) and computing mesh-mesh distances [25–27, 27, 28]. Since we
know the geometry of the robot, we can reduce the computation required for collision checking by repre-
senting the robot’s volume with a set of spheres [29] as shown in Figure 3. With this sphere representation
for the robot, our collision avoidance cost terms only need to check the distance between the origin of
each sphere and the world, then subtract the radius to get the sphere distance. Similarly, for self collisions,
we only have to compute the distance between pairs of spheres (i.e. compute point distance and subtract
the radii of the two spheres). This enables our approach to scale to low-power edge devices and also ac-
commodate very large batch queries. We discuss some techniques to approximate a mesh with spheres in
Appendix D. We will next discuss how we map between the robot joint configuration and the location of
the spheres.

3.1 Robot Kinematics

Robot kinematics 𝐾𝑠 (·) enables mapping between a robot’s joint configuration and the Cartesian
pose (SE(3)) of all geometries attached to the robot. This mapping is done by computing a sequence of
transformations from the base link of the robot to the different links attached through joints. Each actuated
joint adds an additional transformation based on it’s value and type. Hence, traversing the robot’s kinematic
tree by design is sequential for serial manipulators. To overcome the sequential nature of computation, we
represent the transformations as homogeneous matrices (4x4), enabling us to use four parallel threads to
compute matrix multiplications. Once we build the pose of all links of the robot, we perform matrix vector
products to compute the position of the spheres. We also output the pose of the end-effector as a position
and quaternion. For computing the backward, we use 16 threads to read and project the gradients from
the Cartesian space to the joint space. By using many threads for a single kinematics query, we overcome
some of the memory overhead that comes with parallel compute devices. Our kinematics function supports
single axis actuation across all three linear and three angular spaces. Extensive details are available in Ap-
pendix E.1. Figure 3-a shows the output of our forward kinematic function, given a joint configuration of
the robot.

3.2 Self-Collision Avoidance

For avoiding self-collisions, we formulate a distance cost that computes the largest penetration distance
between spheres from all links. Sincemost robots allow for safe contact between consecutive links and some
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(a) Sphere representation of Franka Panda (b) Quadratic collision cost profile

Figure 3: A sphere representation of the Franka Panda is shown in the left. We also visualize the end-
effector frame by the axis near the gripper. cuRobo’s kinematics function takes the joint configuration of
a robot and outputs the location of these spheres and the pose of the end-effector. We generate bounding
spheres for the robots using NVIDIA Isaac Sim’s sphere generator (website). On the right, we show the
quadratic cost profile for smoothly transitioning from collision (dotted vertical line at 0m) to non-collision
space using an activation distance 𝜂 (shown by dashed black vertical line at 0.03m).

link pairs will never be in collision due to kinematic limits, we build a set of sphere pairs 𝑆 for which self-
collision needs to be checked. We empirically found only 50% of the sphere pairs end up in this collision pair
set across many widely used manipulators. We scale the largest penetration distance by a scalar weight 𝛽1.
Our self-collision term can be written as,

𝐶𝑟 (𝐾𝑠 (𝜃𝑡 )) = 𝛽1 max
𝑖, 𝑗∈𝑆
(max(0, 𝑠𝑖,𝑟 + 𝑠 𝑗,𝑟 − ||𝑠𝑖,𝑥 − 𝑠 𝑗,𝑥 | |)) (9)

where 𝑠𝑖,𝑥 , 𝑠 𝑗,𝑥 ∈ R3 are the positions, 𝑠𝑖,𝑟 , 𝑠 𝑗,𝑟 ∈ R are the radii of of spheres 𝑖 and 𝑗 respectively.

3.3 World Collision Avoidance

Generating smooth obstacle avoidance behavior has been studied extensively in the the literature [7, 11, 28,
30]. We highlight common pitfalls in collision-free motion optimization and how our approach overcomes
them by leveraging existing techniques and introducing novel contributions below,
Discontinuity at surface boundary: Discontinuity in the collision cost term near an obstacle surface
leads to poor conditioning of the optimization problem, especially when collision cost term is non-convex.
To mitigate this issue, we add a buffer distance 𝜂 and change the cost to be quadratic when within 𝜂 distance
to the obstacle surface similar to [7] as shown in Fig. 3-(b). This modification of the collision distance 𝑑𝑐 ,
given the signed distance 𝑑 can be written as,

𝑑𝑐 =




𝑑 + 0.5𝜂 if 𝑑 > 0
0.5
𝜂
(𝑑 + 𝜂)2 if − 𝜂 < 𝑑 < 0

0 otherwise

(10)

Speeding through obstacles: When a collision cost term only penalizes the position of the sphere, the
optimization can attempt to move through obstacles (i.e., high penalty region) very fast to reach a lower
cost region compared to being in collision for many timesteps (see our website for a visualization of this
phenomenon). To mitigate this issue, we implement a speed metric, similar to [7], that scales the collision
cost of a sphere by it’s velocity 9𝑠 (calculated through finite-difference). This encourages the optimization to
move around the obstacle instead of speeding through an high penalty region.

Collision at real-robot execution: Tuning a robot’s control box to track a planned kinematic trajectory
with millimeter accuracy at high speeds can be very time consuming. In addition, most manufacturers do
not provide many parameters to tune their control box. Any Path deviation near obstacles could lead to
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catastrophic collisionswith theworld. To be robust to path deviations, we penalize the robot’s velocitywhen
within 𝜂 distance to obstacles as robots can track with higher accuracy at slower speeds. This penalization
is performed by enabling our speed metric when within 𝜂 distance instead of only enabling at collision. This
brings our collision term to 𝑑𝑠 = 9𝑠𝑑𝑐 .

Collision with thin obstacles: Motion optimization is commonly done by discretizing the trajectory by
some timesteps and computing collisions at these timesteps. However, if the trajectory does not have a fine
resolution of discretization, collisions with very thin obstacles could be missed. To overcome this issue,
we develop a novel formulation of continuous collision checking that only requires a point query signed
distance function from the world representation, enabling continuous collision checking with a variety of
world representations. We discuss this formulation in the next Section 3.4.

3.4 Continuous Collision Checking

Continuous collision checking is a well studied problem [31–33], with many methods building a swept
volume followed by checking collision between the swept volume and the obstacles. However, collision
checking using swept volumes requires the world representation to be able to compute signed distance be-
tween complex geometry (i.e., the swept volume) and the obstacles in the world. This is only possible for
worlds represented by primitive shapes or meshes. Worlds represented using neural networks [34, 35] or
voxels [36] will require special mechanisms toworkwith swept volumes. To avoid this complexity, we intro-
duce a novel formulation of continuous collision checking that only requires a point signed distance query
function from a world representation. We hope that this reduces the barrier for the perception community
to deploy their world representations into cuRobo for global collision-free motion generation. Our method
is related the iterative method from Bruce [37] and loosely related to the bubbles concept fromQuinlan and
Khatib [38]. The difference between our approach and Bruce’s approach is we not only compute the signed
distance but also the gradients. We also formulate the computation to run in parallel threads for each time
step in the trajectory.

Our continuous collision checking algorithm is illustrated in Fig. 4. Given a trajectory of a sphere discretized
by three timesteps 𝑆 [0,1,2] , we first check if the sphere 𝑆1 is in collision. If it is in collision, we compute the
collision cost and move by sphere radius. If it’s not in collision, we compute the signed distance to the
nearest obstacle and move this distance along the direction of motion between 𝑆0 and 𝑆1, which we term as
sweep backward. If we hit a collision, then we compute the collision cost and then continue sweeping until
we reach the midpoint between 𝑆0 and 𝑆1. Similarly, we sweep forward until midpoint between 𝑆1 and 𝑆2.
For every sphere location in the trajectory, we sweep forward and sweep backward upto the mid distance
as this enables our gradient computations to be parallelizable (i.e., gradient for a sphere location does not
depend on the collisions at other sphere sweeps).

Our implementation of the algorithm assumes that the sphere is moving linearly between waypoints which
is not true for links attached through a revolute joint. Empirically, we found that even with this assumption,
the optimization was able to find paths in tight spaces. We leave incorporating exact movement path be-
tween sphere waypoints for future work and discuss the implementation of this algorithm in Appendix E.3.

3.5 World Representation

To compute the world collision cost term, we only require the ability to compute the closest point 𝑐𝑟 ∈ R3
to a query point and also if the query point is inside or outside an obstacle 𝑠𝑟 ∈ [−1, 1]. These quantities can
be obtained from a differentiable point query signed distance function or through geometric processing. We
implement three different world representations that output these quantities through geometric processing,

Oriented Bounding Box We implement an efficient cuboid query function as we found cuboids to be a
common representation for collision avoidance in many real-world deployments. For this world
representation, we assume the world is made of only oriented bounding boxes (i.e., cuboids with
a SE(3) pose).

Mesh Leveraging NVIDIA warp’s bounding volume hierarchy (BVH), which stores mesh’s faces and ver-
tices in an accelerated framework for fast closest point and inside/outside queries. This represen-
tation assumes the world is represented by watertight meshes.

Depth Camera Third, we write a wrapper to NVIDIA nvblox [39] which integrates Euclidean Signed Dis-
tance (ESDF) from truncated Signed Distance Fields (TSDF) streaming from a depth camera. This
representation enables us to build a ESDF voxel representation of the world using a depth camera
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Sweep backward

Sphere 1-2 distanceSphere 0-1 distance
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Sweep forward

Sphere 1-2 distanceSphere 0-1 distance

Given: Sphere Trajectory

Step 2: Sweep backward Step 3: Sweep forward

0 21

Sphere 1-2 distanceSphere 0-1 distance

Step 1: Sphere 1 collision

Figure 4: Our continuous collision checking algorithm is illustrated for a sphere moving from position 0
to 2 through 1. To compute the collision distance at a timestep 𝑆1, we first check if 𝑆1 is in collision (step
1). If it is not in collision, we compute the distance to the closest obstacle (shown as red circle in step 2)
and sweep backward by checking for collision at this distance along the trajectory between 𝑆0 and 𝑆1. If
no collision is found, we repeat until we reach midpoint between 𝑆0 and 𝑆1. We similarly do this iterative
process between 𝑆1 and 𝑆2 in sweep forward (step 3).

and use this for computing collision distance. This representation assumes that we have access to
a depth camera and accurate pose of the camera with respect to the robot’s base at each frame for
integrating into nvblox.

Our implementation of the collision cost also allows for using a combination of the three world repre-
sentations as we sum over all collisions in the world. In addition to these representations, our robot
sphere representation allows for interfacing with other methods that can output a differentiable signed
distance [34, 35, 40]. For example, Tang et al. [41] integrated a learned SDF representation of the world [35]
for collision avoidance in cuRobo.

The overall world collision term can be written as,

𝐶𝑤 (𝑆𝑡−1,𝑡,𝑡+1) = 𝛽2speed(𝑆𝑡−1,𝑡,𝑡+1)smooth(sweep(𝑆𝑡−1,𝑡,𝑡+1)) (11)

where 𝛽2 scales the cost by a large penalty to act as a soft constraint, sweep(·) computes the collision
distance using our continuous collision checking algorithm from Sec. 3.4. The function smooth(·) adds the
quadratic smoothing over the collision distance using Eq. 10, which is then scaled by the velocity of the
sphere speed(·). We sum this term across all spheres that represent the robot.

4 Parallel Optimization Solver

There are several techniques to solve the optimization problem defined in Section 2, from particle-based
optimization [8, 42] to gradient-based optimization [7, 9, 12, 21] methods. In particular many trajectory
optimization methods [7, 12, 21] have approximated hard constraints as soft constraints by treating them as
cost terms with large weights to transform the optimization problem from one with nonconvex constraints
to a box-constrained nonconvex optimization problem. Motivated by these successes, we also approximate
our constraints as cost terms and implement a quasi-newton solver to solve this nonconvex optimization
problem.
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L-BFGS, a quasi-newton optimization method that can solve very large optimization problems, is a common
method shown to achieve superlinear convergence by estimating the Hessian using evaluated gradients.
Our optimizers are built around L-BFGS because of its combined performance and relative simplicity that
aids parallelization. Gauss-Newton solvers are also ubiquitous and important in robotics [10, 43, 44], but
after an initial exploration we decided to focus our experiments on L-BFGS. Many formulations of Gauss-
Newton restrict their presentation to the nonlinear least-squares problem [10, 45] where performance is
best understood, but that’s unduly restrictive in our setting. These methods can be generalized as a form
of natural gradient descent [11] and related formulations of iLQG [46] demonstrate their empirical utility
on more general costs using quadratic approximations. However, appropriately leveraging the problem
structure within a GPU is not straightforward and the band-diagonal solve commonly used is inherently
sequential leaving a number of open questions we would need to resolve. Our benchmarks indicate that
even the simpler L-BFGS shows significant improvement over the state-of-the-art when GPU compute is
properly leveraged; we leave a full exploration of Gauss-Newton to future work.

4.1 Parallel L-BFGS Optimization

Our L-BFGS optimizer has two steps, we first compute the step direction given the current optimization
variables Θ = 𝜃𝑡 ∈[0,𝑇 ] and the gradient ΔΘ with respect to the sum of the cost terms using the standard
L-BFGS steps as described in Nocedal and Wright[45]. Given this step direction ΔΘ, we perform line search
by scaling the step direction with a discrete set of magnitudes 𝛼 ∈ R

𝑛 and computing the best magnitude
from this set using Armijo and Wolfe conditions as shown in Alg. 1. Extensive details on our solver is
available in Appendix A.7.

Our approach of trying a predefined discrete set of magnitudes instead of iteratively searching for the
largest magnitude that satisfies the condition enables us to more effectively use parallel compute as the
cost and gradient for the discrete set can be computed in parallel. For the case where none of the values
in our discrete set satisfies the line search conditions, we use a very small magnitude (0.01) which acts as a
noisy step update. This noisy step update also prevents NaN values in the the step direction computation
as there is always a perturbation in the optimization variables between iterations. After every optimization
iteration, we update our best estimate as the optimization could diverge due to noisy perturbation in line
search. Empirically, we found that the use of a noisy perturbation instead of stopping the optimization
when line search fails to find a magnitude that satisfied the conditions greatly increased the convergence
rate on trajectory optimization problems as shown in Section 7.

Algorithm 1: Parallel Noisy Line Search

Param: Θ,ΔΘ, 𝛼 = [0.01, ...]
1 Θ𝑙 ← clip(Θ + 𝛼ΔΘ) ⊲ get bounded variables

2 𝑐0, 𝑐𝑙 ← 𝑐 (Θ0), 𝑐 (Θ𝑙 ) ⊲ compute cost for magnitudes

3 𝛿Θ𝑙 ← 𝛿𝑐𝑙 ⊲ compute batched gradients

4 𝑎 ← 𝑐𝑙 ≤ 𝑐0 + 𝜂1𝛼ΔΘ ⊲ Armijo Condition

5 if Wolfe then
6 if Strong then 𝑎2 ← abs(𝛿Θ𝑙𝛼) ≤ 𝜂2ΔΘ
7 else 𝑎2 ← 𝛿Θ𝑙𝛼 ≥ 𝜂2ΔΘ
8 𝑎 ← 𝑎 && 𝑎2
9 end

10 𝑖 ← largest true(𝑎) ⊲ returns 0 when none is true

11 𝑐, Θ̂, 𝛿Θ̂← 𝑐𝑙 [𝑖],Θ𝑙 [𝑖], 𝛿Θ𝑙 [𝑖] ⊲ return best

4.2 Particle-Based Optimization

To encourage L-BFGS to reach a local optima, we devise a strategy combining particle and gradient-based
optimization. This is inspired by strong theoretical results in stochastic gradient Markov Chain Monte
Carlo [47, 48], and sampling-based MPC controllers such as MPPI [49]. In our method, we first run a few
iterations of particle-based optimization over the initialization before sending to L-BFGS. Given an initial
mean trajectory of joint configurations Θ𝜇 = 𝜃 [1,𝑇 ] and a covariance Θ𝜎 , we sample 𝑛 particles 𝜃𝑛,[1,𝑇 ]
from a zero mean Gaussian and then update 𝜃𝑛,[1,𝑇 ] = Θ𝜇 +

√
Θ𝜎 ∗ 𝜃𝑠 . We compute the cost for these

particles 𝐶 (𝜃𝑛,[1,𝑇 ]) ∈ R𝑛 and calculate the exponential utility 𝑤 =
𝑒𝑐𝑖∑𝑛
𝑖=0 𝑒

𝑐𝑖
, where 𝑐 =

−1.0
𝛽
𝐶 (𝜃𝑛,[1,𝑇 ]). We
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then update the mean and covariance as,

Θ𝜇 = (1 − 𝑘𝜇)Θ𝜇−1 + (𝑘𝜇)𝑤 ∗ 𝜃𝑛,[1,𝑇 ], (12)

Θ𝜎 = (1 − 𝑘𝜎 )Θ𝜎−1 +𝑤 ∗ (𝜃 2𝑛,[1,𝑇 ] − Θ𝜇−1). (13)

We found that the use of particle-based optimization to initialize L-BFGS led to better convergence as em-
pirically validated in Sec. 7. To tackle very hard problems and further reduce the number of seeds required
to converge, we develop a parallelized geometric planner that generates collision-free geometric paths be-
tween start and goal in the next section.

5 Parallel Geometric Planner

We develop a geometric planner to generate a collision-free path from the start configuration 𝜃0 to the goal
configuration 𝜃𝑇 . This generated path is specified by a list of 𝑤 waypoints 𝜃 [0,𝑤 ] through which the robot
passes in a linear fashion. By studying common geometric planning methods [3], we found three main
components in graph building that can benefit from parallel compute. Specifically, sampling collision-free
nodes, finding k nearest nodes in graph, and steering from each sampled node to k nearest nodes. We
implement algorithms to perform these tasks in parallel on the GPU in our geometric planner.

Algorithm 2: Parallel Geometric Planner

Data : 𝜃𝑏,0, 𝜃𝑏,𝑔
Param: 𝑔𝑚𝑎𝑥 , 𝑔𝑟𝑒 𝑓 𝑖𝑛𝑒 , 𝑐𝑚𝑎𝑥 ,𝑐𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 , 𝑘𝑟𝑒 𝑓 𝑖𝑛𝑒 , 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒 , 𝑝𝑖𝑛𝑖𝑡 , 𝑝𝑟𝑒 𝑓 𝑖𝑛𝑒 , 𝑝𝑒𝑥𝑝𝑙𝑜𝑟𝑒
Result: path found, path(Θ𝑏,[0,𝑤 ] )
Init : 𝑘𝑛 ← 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒 , 𝑐𝑚𝑎𝑥 ← 𝑐𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 , 𝑝𝑛 ← 𝑝𝑒𝑥𝑝𝑙𝑜𝑟𝑒 , 𝑖 ← 0

1 e = [[𝜃𝑏,0, 𝜃𝑏,𝑔], [𝜃𝑏,𝑔, 𝜃𝑏,0], [𝜃𝑏,0, 𝜃𝑟 ], [𝜃𝑟 , 𝜃𝑏,0], [𝜃𝑏,𝑔, 𝜃𝑟 ], [𝜃𝑟 , 𝜃𝑏,𝑔]]
2 steer connect(e) ⊲ Connect start, goal, and retract

3 path found, path, min len← shortest path(𝜃𝑏,0, 𝜃𝑏,𝑔)
4 if path found then
5 path, min len, 𝑐𝑚𝑎𝑥 ← shortcut path(𝜃𝑏,0, 𝜃𝑏,𝑔)
6 if min len == 2 then return path
7 end
8 𝑐𝑚𝑖𝑛 ← 𝑑𝑖𝑠𝑡 (𝜃𝑏,0, 𝜃𝑏,𝑔)
9 while not path found or 𝑖 < 𝑔𝑟𝑒 𝑓 𝑖𝑛𝑒 do
10 𝑖𝑑 ←random(!path found) ⊲ Pick an index from the set of queries that do not have a path yet.

11 𝜃𝑠,𝑘 ← sample nodes(𝜃0, 𝜃𝑔, 𝑐𝑚𝑎𝑥 , 𝑝𝑛) ⊲ sample nodes within ellipse

12 𝑒 ← 𝑛𝑒𝑎𝑟 (𝑘𝑛, 𝜃𝑠,𝑘 ) ⊲ Find 𝑘𝑛 nearest samples 𝜃𝑠,𝑘 to existing nodes in graph

13 steer connect(e) ⊲ Steer and connect to graph

14 path found, path, min len← shortest path(𝜃𝑏,0, 𝜃𝑏,𝑔)
15 𝑖+ = 1
16 if path found && min len > 3 then
17 path, min len, 𝑐𝑚𝑎𝑥 ← shortcut path(path)
18 else
19 𝑐𝑚𝑎𝑥 [𝑖𝑑] ← 𝑐𝑚𝑎𝑥 [𝑖𝑑] + 𝑐𝑚𝑖𝑛 [𝑖𝑑] ∗ 𝜂𝑒𝑥𝑝𝑙𝑜𝑟𝑒
20 𝑝𝑛+ = 𝜂𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ∗ 𝑝𝑛
21 𝑘𝑛+ = 𝜂𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ∗ 𝑘𝑛
22 end
23 end
24 return path found, path

Our geometric planner as shown in Alg. 2, first performs heuristic planning by checking if we can steer from
start to goal configuration directly [50] or through a predefined retract configuration 𝜃𝑟 (lines 1-7). If this
heuristic fails, we sample collision-free configurations 𝑣𝑛𝑒𝑤 from an informed search region that samples
within 𝑐𝑚𝑎𝑥 of the straight line distance between start and goal similar to BIT∗ [51] (line 11). We then
find the 𝑘𝑛 nearest neighbours from the existing graph and try to steer from the graph nodes to the new
vertices (lines 12-13). We repeat these steps until we find a path with only one waypoint (line 16). Between
re-attempts we grow the number of sampled nodes 𝑝𝑛 , the number of nearest neighbours 𝑘𝑛 , and the search
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region 𝑐𝑚𝑎𝑥 to grow the exploration space of the geometric planner (lines 19-21). To efficiently leverage
parallel compute in geometric planning, we develop an algorithm to steer from 𝑠 vertices 𝜃𝑠,0 in a graph
with 𝑠 sampled new configurations 𝜃𝑠,𝑘 in parallel as described in Alg. 3.

Algorithm 3: Parallel Steering

Input: 𝑒 = [𝜃𝑠,0, 𝜃𝑠,𝑘 ]
Parameters: r, 𝑑𝑤

1 ®𝑔← 𝑑𝑖𝑠𝑡𝑣𝑒𝑐 (𝜃𝑠,0, 𝜃𝑠,𝑘 ) ⊲ distance between nodes

2 𝑛 ←𝑚𝑎𝑥 ( | ®𝑔|/𝑟 ) + 1 ⊲ find largest distance

3 ®𝑑 ← 𝑑 [: 𝑛 + 1]/𝑛 ⊲ discretize based on largest distance

4 ®𝑙 ← 𝜃𝑏,0 + ®𝑑 ∗ ®𝑔/𝑑𝑤 ⊲ get disretized edges

5 𝑚𝑎𝑠𝑘 ← mask samples(®𝑙) ⊲ check for validity

6 ℎ ← first false(𝑚𝑎𝑠𝑘) − 1 ⊲ first collision index/edge

7 ℎ[ℎ == −1] ← 𝑛
8 𝑣𝑛𝑒𝑤 ← 𝑙 [ℎ] ⊲ store last valid point/edge

9 𝑑 ← dist(𝜃𝑠,0, 𝑣𝑛𝑒𝑤) ⊲ store distance value in edge

10 graph add(𝜃𝑏,0, 𝑣𝑛𝑒𝑤, 𝑑)

We also implement a shortcut path() function that tries to connect each waypoint with every other
waypoint in the path to try to find a shorter path. We leverage this geometric planner to also find paths
between a batch of start and goal configurations or from a single start to a goal set. We achieve this by
randomly choosing a query index (for which a path does not exist yet) and sampling in this query region
to expand the graph (lines 10,11).

6 Results

We validate and compare our approach to existing methods on two motion planning datasets, the motion-
benchmaker dataset [52] containing 800 problems and the mpinets dataset [53] containing 1800 problems.
Both datasets contain motion planning problems for the Franka Emika Panda robot, which has 7 actuated
joints. The datasets span 12 unique scene types, with each problem starting the robot at a collision-free joint
configuration and defining the goal as a desired end-effector pose. A few instances of the motion planning
problems from this set is shown in Fig. 5. We provide the planning problems along with code to compute
different metrics at github.com/fishbotics/robometrics.

We first analyze the quality of solutions in Section 6.1, then compare compute times in Section 6.2. We
also analyze our collision-free inverse kinematics solver in Section 6.2.4, followed by an analysis of our
kinematics and distance query modules in Section 6.2.5, as they can also be used independently in other
manipulation tasks.

6.1 Motion GenerationQuality

We focus analysis of motion generation quality to metrics that affect the success rate, and execution time
of the computed motions. We compute six different metrics that capture geometric and temporal qualities
of the generated trajectories. First, we compute the standard metrics from geometric planning methods,
specifically Success on a dataset within a given time and C-Space Path Length which is the distance traveled
by the robot’s joints to reach the target pose. In addition, we introduce four metrics that evaluates time
parameterization of the generated motions. TheMotion Timemetric compares the trajectory times given the
number of trajectory points 𝑛 and the time𝑑𝑡 between waypoints (i.e., (𝑛−1) ∗𝑑𝑡 ). If a robot perfectly tracks
the planned trajectory, then this Motion Time would be the execution time. When moving manipulators at
high-speed, they become very sensitive to jerk profiles, especially when starting from or ending at zero
velocity (i.e., idle). This has prevented motion generation approaches from executing at the full rated speed
of a robot. We hence introduce a metric that measures the maximum jerk across the trajectory, which
we call Maximum Jerk metric. We also measure the Maximum Acceleration and Mean Velocity across the
trajectory to draw further comparisons between methods.

We compare our method to Tesseract [20] which uses Bullet’s continuous collision detector [24], Open
Motion Planning Library (OMPL) [54] for geometric planning, and TrajOpt [9] for trajectory optimization.
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Figure 5: Motion planning problems across the 12 different scenes are visualized here. The top image
shows the robot in the start configuration and the bottom image shows the robot at a final configuration
after running cuRobo’s motion generation. The top two rows show scenes from the motion benchmaker
dataset [52] and the bottom row shows the scenes from motion policy networks [53]

We use two motion planning methods from Tesseract, one that only performs geometric planning with
RRTConnect [55] which we call Tesseract-GP and one that uses the geometric plan as a seed to Trajopt for
trajectory optimization which we call Tesseract.2 We compare these baselines to two versions of motion
generation from cuRobo, one that only does geometric planning cuRobo-GP using our algorithm from Sec-
tion 5 and the other that does Trajectory Optimization cuRobo. For all methods, we timeout at 60 seconds
and allow random restarts until this timeout is reached. More details on the baselines and the evaluation
methods are available in Appendix B.

We report the success across the 2600motion planning problems in Figure 6. We count a trajectory as Success
when it is collision-free, it doesn’t violate any joint limits, and is within 5mm and 5% of desired position
and orientation respectively. We found our geometric planner cuRobo-GP to find a path on 99.8% of the
dataset compared to Tesseract-GP’s 98.6%. Our geometric planner only failed on 5 problems compared to
Tesseract-GP failing on 36 problems. When we compare trajectory optimization methods, cuRobo only failed
on 5 problems while Tesseract failed on 38 problems, giving a success rate of 99.8% and 98.53% respectively.
cuRobo and cuRobo-GP failed on the same set of five problems. When we look at these problems in Fig. 7,

2We also tried Tesseract’s TrajOpt integration with a linear seed but it failed to find solutions on most problems.
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Figure 6: We plot the success of different methods on the motionbenchmaker and mpinets dataset in
these plots. On the left we plot the number of failures on our evaluation dataset which contains 2600
problems. cuRobo only fails on 5 problems which are all invalid problems when evaluated with cuRobo’s
collision representation. On the right plot, we see that cuRobo has a higher success % than Tesseract.

Goal Pose in Collision

No Collision-free IK for Goal Pose Start Config in Collision

Figure 7: cuRobo failures in the dataset are visualized here. We found 3 instances the goal pose be in
collision as shown in the top row. We found one instance where the all IK solutions to the goal pose was
in collision as shown in the bottom left image and one instance where the start joint configuration was in
collision as shown in the bottom right image.

we see that 3 problems have their goal pose in collision with the world, 1 problem as the start configuration
in collision, and one problem does not have a collision-free IK solution to the goal pose. The reason for
these problems to be invalid for cuRobo is because we evaluate cuRobo with our cuboid collision checker
which approximates the obstacles represented by cylinders as cuboids. While cuRobo also has mesh-based
collision checking and depth camera based collision checking, we leave evaluating these collision checkers
for a future work.

Next, we plot C-Space Path Length across the four methods in Figure 8. First, we observe that our geometric
planner cuRobo-GP has shorter path length than Tesseract-GP which uses RRTConnect. cuRobo-GP’s path
lengths are [5.39, 7.13, 13.45] radians on mean, 75th, and 98th percentile of the dataset compared to Tesseract-
GP’s [7.1, 8, 17.2] radians. We then observe methods that use trajectory optimization, cuRobo and Tesseract
have shorter path length than geometric planning methods cuRobo-GP and Tesseract-GP. Tesseract reduces
paths on average by 48% when compared to Tesseract-GP. cuRobo reduces the path length by 53% on average
when compared with Tesseract-GP. cuRobo reduces path length by 53%, 39%, and 10% on average when
compared to Tesseract-GP, cuRobo-GP, and Tesseract respectively. When we compare cuRobo with Tesseract,
we found that cuRobo’s paths are 26% shorter than Tesseract on the 98thpercentile of the dataset.
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Figure 8: We compare the C-Space Path Length across different methods in the above plots. On the left,
we see that cuRobo has shorter path lengths than all other methods and cuRobo-GP has shorter path
than Tesseract-GP. On the right, we plot the reduction in path length with cuRobo over Tesseract across our
test dataset.

From the geometric planning metrics, we find that trajectory optimization methods have comparable suc-
cess percentage to geometric planningmethodswhile also providing shorter path lengths than RRTConnect-
like planners. While optimal geometric planners can generate shorter paths than RRTConnect, they require
either more planning time or task-specific heuristics as shown in Appendix C.1. Our goal is not only to get
shorter paths, but also trajectories that can be executed on robots with minimal post-processing. Geometric
planning methods require time parameterization as a post-processing step to be able to execute on robots.
Kunz and Stilman developed a bounded velocity and acceleration time-parameterization technique [4] that
is extensively used in the robotics community, including MoveIt [56]. However, this time parameterization
technique does not bound the jerk along the trajectory and as such can have very large jerks. We could not
find any accessible software library that can post process geometric paths while bounding jerks, making
geometric path planning not directly deploy-able on jerk sensitive manipulators. We hence only compare
between Tesseract and cuRobo on the time parameterization metrics. We additionally take the trajectories
obtained from Tesseract and post process with Kunz and Stilman’s method, which we call Tesseract-TG.
We add this to our comparisons to highlight the improvements we can get with trajectory optimization
techniques, especially with cuRobo’s minimum jerk formulation.
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Figure 9: We compare the Motion Time (i.e., length of the trajectory in time) generated by cuRobo
with Tesseract and also to Tesseract-TG which post processes the trajectory with a time-optimal reparam-
eterization developed by Kunz and Stilman [4]. On the left plot, we see that cuRobo generates trajectories

that are within 3 seconds on the 98thpercentile while Tesseract generates significantly slower trajectories
at 5 seconds. On the right plot, we observe that cuRobo obtains trajectories that are 1.62× faster than
Tesseract. cuRobo is within 0.9× of Tesseract-TG motion time while having 9× lower jerk.
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Figure 10: The maximum jerk along the trajectory across all joints is shown in the plots. On the left plot,

we see that cuRobo has a maxumum jerk of 136 rad.𝑠−3 on the 98thpercentile of the dataset while Tesseract
has 501 rad.𝑠−3 a 7x higher value as shown by the plot on the right.
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Figure 11: The maximum acceleration and mean velocity across the dataset is plotted for the different
methods. cuRobo has the smallest acceleration (the left plot) across the methods while having similar mean
velocity to Tesseract on the right plot.

The first in time parameterization metrics is Motion Time which we plot in Figure 9. cuRobo’s trajecto-
ries take [1.59, 1.89, 3] seconds compared to Tesseract’s [1.96, 2.17, 4.86] seconds on the mean, 75th, and
98th percentiles. cuRobo produces trajectories that have a 1.23x lower mean and 1.62x lower 98th percentile
motion time when compared to motions generated by Tesseract. This large reduction in motion time leads
to cuRobo’s 98th percentile being 2.86 seconds quicker than Tesseract. When we compare cuRobo’s solutions
to Tesseract-TG which uses time-optimal reparameterization, cuRobo generates trajectories that are 0.3 sec-
onds slower both on average and 98thpercentile of the dataset. This slow down is because cuRobo also
optimizes for minimum-jerk, leading to trajectories with 12x lower jerk on average compared to Tesseract-
TG as shown in Fig. 10. When comparing to Tesseract, we generate trajectories that have 4x lower jerk on
average as Tesseract doesn’t minimize jerk.

We compare the mean velocity and maximum acceleration between methods in Figure 11. Tesseract-TG has
the largest values in mean velocity and maximum acceleration as Kunz and Stilman’s time parameterization
technique by design attempts to reach peak velocity by instantly jumping to maximum acceleration. Tesser-
act has larger max acceleration when compared to cuRobo as it doesn’t have to optimize for jerk and as
such can instantaneously change acceleration along the trajectory without any penalties. We also observed
that Tesseract has a 98th percentile maximum acceleration of 23.9 rad.s−2 which is beyond the 15 rad.s−2

acceleration limit we set for the Franka Panda robot. cuRobo has the smallest maximum acceleration across
the dataset as we minimize jerk across the trajectory, which penalizes instantaneous changes to acceler-
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Figure 12: We compare the compute time for motion generation between cuRobo and Tesseract across
three compute platforms. On all of the 2600 motion planning problems, we found cuRobo to take the least
time, getting a 60× speedup on average on a desktop pc with NVIDIA RTX 4090 and AMD Ryzen 9 7950x,

with a 83× speedup on the 98th percentile.

ation. Even with the smallest maximum acceleration, cuRobo’s mean velocity is comparable to Tesseract,
slightly higher in the mean by 0.02 rad.s−1 and 0.01 rad.s−1 in the 75th percentile.

Summarizing across these metrics, cuRobo produces paths that are shorter in path length than any other
method while also succeeding on all feasible problems in the dataset. In addition, cuRobo generates trajecto-
ries that have the least jerk, 4x lower than existing trajectory optimization techniques, and 12x lower than
existing time parameterization methods. Trajectories generated with cuRobo also have motion times 1.23x
lower than existing trajectory optimization techniques and is within 0.3 seconds of high-jerk time parame-
terization methods. We will next analyze the compute time taken by cuRobo to obtain these trajectories.

6.2 Compute Time

We calculate the compute time on three platforms, a PC with an AMD Ryzen 9 7950x CPU and NVIDIA
RTX 4090 GPU, and an NVIDIA Jetson AGX Orin 64GB system configured to operate at MAXN (60W) and
15W power budgets. We measure runtime using Python’s time utility after synchronizing device and host.

6.2.1 Motion Generation

The time it takes to compute motions using cuRobo is compared to Tesseract in Figure 12 across all three
platforms. We observed that Tesseract takes on average 2.95 seconds compared to cuRobo taking 50ms,
leading to a 60× speedup in motion planning. The gap in planning time increases at the 75th percentile of
evaluation set, cuRobo taking 30ms to plan while Tesseract takes 2.47 seconds, leading to a 72× speedup in
planning with our proposed method. On the 98th percentile of the dataset, cuRobo takes 260 milliseconds
while Tesseract takes 22 seconds, giving cuRobo 83× speedup in planning. The difference in planning time
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Figure 13: Motion generation time across compute platforms for Tesseract and cuRobo is shown with the
x-axis in logarithmic scale to better highlight the difference in time across the dataset. cuRobo at 15W on
the NVIDIA Jetson ORIN AGX (cuRobo-ORIN-15W) is faster than Tesseract on a full desktop PC with an i7
processor (Tesseract-i7) as seen by large gap in x-axis across the full dataset. In addition, we see that cuRobo
slows down on the Jetson compared to a NVIDIA RTX 4090.
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Figure 14: Wemeasure the time taken by cuRobo in the optimization iterations Solve Time and compare it
to the time taken by the full pipeline. As our library is implemented in python, we take measurable amount
of time outside of the solver iterations which could be reduced by rewriting in a compiled programming
language.

across the mean, 75th, and 98this because cuRobo calls the geometric planner only after three failed attempts
with linear seeds.

The speedup over Tesseract scales to the NVIDIA Jetson ORIN as well, in both power modes as shown in
Figure 12. cuRobo takes 0.22 seconds and 0.48 seconds on average on at MAXN and 15w while Tesseract
takes 6.13 seconds and 10.3 seconds respectively. On average, cuRobo is 28× and 21× faster than Tesseract
at MAXN and 15W respectively. We also oberved that cuRobo is faster on a NVIDIA Jetson ORIN at 15W
than Tesseract running on a desktop PC as shown in Figure 13.

Our approach is implemented in python with key compute kernels in CUDA C++ called through python
wrappers. We reduced the python overhead and the overhead of repeatedly launching CUDA kernels by
recording optimization iterations and the mask samples function in geometric planning (see Algorithm 3)
in CUDA Graphs. We then replay the recorded CUDA Graphs with data from new planning problems. This
use of CUDA Graphs reduced our planning time by 10x compared to calling the kernels individually from
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Figure 15: Our GPU accelerated geometric planner is 101× faster on average compared to OMPL’s im-
plementation of RRTConnect available in Tesseract. We observed an average speedup of 23× and 17× on
the NVIDIA Jetson Orin at MAXN and 15W modes respectively. We see a much larger speedup on the

98th percentile of the dataset across the compute platforms as our GPU accelerated graph builder is able
to explore the workspace in parallel while a CPU based approach scales linearly with edge validation.

python. Our implementation still has some components in python, calling many small cuda kernels to setup
the optimization problems, and also to get the final result from the many parallel seeds. We timed these
parts and found that cuRobo spent 8ms, 5ms, and 30ms on the mean, 75th, and 98th percentile as shown
in Figure 14. The percentage of time spent in these steps compared to the solver time was 15%, 15%, and
12% on average, 75th, and 98th percentiles. We leave speeding up these components by rewriting directly in
C++ and fusing the CUDA kernels to future work. We do share the speedup that could be gained if these
components are optimized by only comparing the iterations time and geometric planning time to Tesseract
in Figure 14. We see that our speedup of 60× becomes 69× on mean, 72× becomes 84× on 75th percentile,
and 83× becomes 93× on the 98th percentile.

6.2.2 Geometric Planning

We compare the compute time in geometric planning between our GPU accelerated geometric planner
introduced in Section 5 which we call cuRobo-GP to OMPL’s RRTConnect implementation in Tesseract,
which we call Tesseract-GP in Figure 15. Tesseract-GP takes 1.5 seconds on average while cuRobo-GP takes
0.02 seconds leading to a 101× speedup in geometric planningwith cuRobo-GP. Looking at the 98th percentile
planning time, Tesseract-GP takes 20 seconds while cuRobo-GP takes 0.04 seconds, giving us a 581× speedup.
A very recent work fromThomason et al. [57] that explores vectorized geometric planning leveraging SIMD
on CPU. The results from their paper show that it takes 0.1ms (mean) to plan on the motion benchmaker
dataset. However, their code is not available at the time of this publication and we leave comparing to it for
a future work.

6.2.3 Trajectory Optimization

We compute the time it takes to perform trajectory optimization in Figure 16 between cuRobo’s GPU ac-
celerated approach and TrajOpt [9] implementation leveraged by Tesseract. We see that cuRobo is 87× and
145× faster in optimization than TrajOpt on average and 75th percentile respectively. cuRobo takes a mere
10ms to perform trajectory optimization compared to TrajOpt taking 1.79 seconds on 75th percentile of the
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Figure 16: We compare our trajectory optimization to TrajOpt which is integrated in Tesseract for collision-
free trajectory generation. On average, our approach is 87× faster than TrajOpt on a desktop PC. On a
NVIDIA Jetson ORIN, our appraoch is 35× and 25× faster at MAXN and 15W modes.

evaluation set. We get speedups of 23× and 17× on Jetson device as well, taking 0.09 and 0.17 seconds
on average on ORIN at MAXN and 15W respectively. These speedups are interesting because numerical
optimization is predominantly iterative where we run many sequential iterations until convergence. These
sequential iterations can make the entire computation graph memory access heavy. Our efficient paral-
lelization of compute across the whole pipeline enables us to get these speedups. We not only run each seed
of optimization in seperate threads but also split many of our workload heavy kernels across many threads
on a per seed basis.

While these timings are based on optimizing collision-free trajectories, we hope that these speedups en-
courage roboticists to leverage cuRobo’s trajectory optimization implementation for other robotics tasks.

6.2.4 Inverse Kinematics

We compare the performance of our inverse kinematics solver against TracIK [23]. We perform two sets of
experiments: (1) without collision checking and (2) with self and environment collision checking. We chose
an instance of the bookshelf-small-panda scene from motion benchmaker [52] for the collision checking
experiment. We sample feasible joint configs from a Halton Sequence and average the results across 5 trials
for different batch sizes. Since TracIK does not account for collisions, we perform rejection sampling with
PyBullet, allowing 10 reattempts. For all cuRobo IK queries, we run 30 seeds in parallel and return the best
solution from these seeds. We evaluate IK with 5 different batch sizes – 1, 10, 100, 500, and 1000. For a single
query (batch size=1), cuRobo takes 2.7ms while TracIK only takes 0.9ms. However, as we increase the batch
size of IK queries, we see a speedup starting from a batch size of 10.

For the standard IK problem, we can generate 37134 solutions per second when we use a batch size of
1000 while TracIK can only generate 1590 solutions, 23.4× slower than our method. When we compare
collision-free IK, our method (cuRobo-Coll-Free) can compute 7611 compared to rejection sampled Trac-
IK (TracIK-Coll-Free) which can only obtain 95 collision-free solutions per second in our experiments, 80x
slower than our approach to collision-free IK as shown in Fig. 37-B. We also found that rejection sampling
approach to collision-free IK failed on 20% of the problems tested. BioIK [58] reports that their approach can
solve IK in 0.7ms (1428 solutions per second), it is not clear from their paper whether the runtime includes
collision-free IK. Even if we consider their timing to be for collision-free IK, our method is still faster starting
from a batch size of 10, taking 0.48ms per solution.
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Figure 17: We compare the compute time in solving inverse kinematics (IK) between cuRobo and
TracIK [23] across different batch sizes. TracIK is able to solve 1000 poses in 629ms while cuRobo only
takes 27ms, 23.4× faster than TracIK. In solving collision-free IK, cuRobo solves 1000 poses in 131ms, 80×
faster than rejection sampled TracIK.

6.2.5 Kinematics and Distance Queries

One of the major breakthroughs in accelerating our motion generation approach was on developing a par-
allel compute friendly implementation of robot kinematics. Most common manipulators have many serially
connected links, making computation of kinematics a largely serial operation. Existing SOTA methods for
forward kinematics on CPUs such as pinnochio [60] take 1𝜇s on average for 7-dof robots while GPU ac-
celerated kinematics implemented in PyTorch such as STORM [61] outmatch CPU methods only at a batch
size of 1000. STORM improves upon implementation from Meier et al. [62] by keeping buffers in memory
between calls without recreating them. This slowdown in GPU based kinematics is because existing imple-
mentations use many CUDA kernels to perform kinematics, e.g., STORM runs through 125 CUDA kernels
to compute kinematics. In cuRobo, we implement the entire kinematics in a single CUDA kernel, discussed
in Appendix E. This enables our approach to outmatch pinnochio’s performance at a batch size of 100 as
shown in Figure 19. We also compare our kinematics implementation with KDL’s implementation which
is used by traciky. We additionally show the improvement with CUDA Graphs in calling GPU methods by
adding a suffix ł-CG”.
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Figure 18: We show reachability analysis as an application of fast batched inverse kinematics in these
images. We sample 500 poses in a grid shown by red and green spheres, and query cuRobo’s batched
inverse kinematics solver for joint configurations to match these poses. We color the spheres as red if
IK was unsuccessful and green if successful. cuRobo is able to run at 15Hz while also sharing the GPU
resources with NVIDIA Isaac Sim. On the right we show our solver also reasoning about world collisions
and marking poses near objects with red as they are not collision-free.
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Figure 19: In the left plot, we see our forward kinematics match CPU methods at a batch size of 100 and
becomes faster by upto 891x on 100k. In the middle plot, we see that our distance queries is upto 16,000x
faster than PyBullet as the batch size grows to 100k. Note that the y-axis is in log scale plots. Leveraging
our faster kinematics and distance queries, we can run MPPI at upto 421hz, 3.36× faster than STORM [59].

For signed distance queries, we compare with two prior methods – PyBullet which uses Bullet to compute
the signed distance [24] and STORM.We are faster beginning at a batch size of 1 as our approach uses many
parallel threads on the GPU for a single query.

6.2.6 Summary

We summarize the median compute time across the different modules in cuRobo in Figure 20. cuRobo’s
implementation of kinematics and collision checking can compute within 1 nanosecond and 10 nanoseconds
respectively when using a batch size of 100k. For general inverse kinematics and collision-free inverse
kinematics, cuRobo can compute within 27 𝜇seconds and 130 𝜇seconds. This low computation time can
accelerate existing robotics pipelines that use inverse kinematics such as reachability analysis [63] and
placement planning [64]. Geometric planning has been used in verifying transition feasibility in hierarchical
planning [65] and task and motion planning (TAMP) [66], where the quality of solutions is not critical
and knowing if a path exists is sufficient. For these applications, leveraging cuRobo’s geometric planning
can lead to a 101× speedup compared to using OMPL’s RRTConnect algorithm. Our implementation of
collision-free trajectory optimization takes 10ms, which could accelerate other robotics problems. The full
motion generation pipeline already runs at 30ms on median on a modern PC. In addition, cuRobo’s motion
generation scales well to a NVIDIA AGX Orin running at 60W, taking only 100ms enabling deployment of
motion generation on edge devices. cuRobo obtains these low compute times while having most of it’s stack
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Figure 20: We plot the median compute time across the many modules we have developed in cuRobo.
The compute time is within 100ms across all modules, with kinematics taking 1 nanosecond, and collision
checking taking 10 nanoseconds when using a batch size of 100k. Inverse Kinematics takes 27 𝜇seconds
and collision-free inverse kinematics takes 130 𝜇seconds with a batch size of 1000 on a NVIDIA RTX 4090.
Trajectory optimization takes 10ms, followed by geometric planning taking 16ms, and motion generation
taking 30ms across the benchmarking dataset.

in Python and with components implemented as separate modules. One could get even better compute
times by fusing the modules at the CUDA kernel level, however that can make the library very rigid and
inaccessible to robot practitioners.

6.3 Real Robot Tracking Performance

We study the tracking performance between the generated motions and executed motions by running
cuRobo on two Universal Robots, an UR5e robot and an UR10 robot. We connect the robots to a NVIDIA
Jetson ORIN AGX which is running a PREEMPT RT kernel and uses the ros driver from universal robots for
communication. We run cuRobo on the same Jetson device and send the generated trajectories to Universal
Robot’s trajectory tracking controller. For both robots, we setup an obstacle and selected seven random
poses scattered around the robot’s workspace, which are shown in Figure 21. We then run motion gen-
eration to reach these seven poses in sequence five times, leading to a total of 35 reaching motion trials.
The robots use an absolute magnetic encoder and an optical encoder together to measure the joint position.
The accuracy of the magnetic encoder is +-0.0017 radians as obtained from [67]. We could not obtain the
accuracy of the optical encoder and also the overall accuracy of the joint position measurement. We hence
assume for all discussion below that the joint position is accurate up to 0.0017 radians.

We generate motions using cuRobo in two different modes, starting with min-acc where cuRobo performs
trajectory optimization with acceleration minimization, without any jerk minimization, followed by min-

Figure 21: We generate motions using cuRobo to reach the 7 poses shown here on the UR5e in the top
and UR10 in the bottom. We use a NVIDIA Jetson AGX ORIN running at MAXN to generate motions using
cuRobo and send the trajectories to the robot.
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Figure 22: The tracking error in joint position space is plotted in the left and the error in velocity tracking
is plotted on the right across the two real robots, UR5e and UR10. Here min-acc and min-jerk refers to
cuRobo’s trajectory optimization with minimum jerk cost disabled and enabled respectively. The black
dotted line in the left plot indicates the accuracy margin of the joint encoders on the robots.

jerk where we minimize jerk along with acceleration. In both these modes, the trajectory is optimized over
32 timesteps, interpolated to a 0.01 second resolution, and sent to the robot. We found no difference between
sending an interpolated trajectory (at a 0.01 resolution) and the optimized coarse trajectory (32 steps) to the
UR10 and the UR5e. However, when executing trajectories with a low-level controller on many common
robots, it might be necessary to interpolate the trajectory to a finer resolution before execution. We hence
run all our experiments with interpolated trajectories.

We first measure the error in tracking the position and velocity across the trajectories. Deviations from the
planned path can lead to critical failure as the robot could hit obstacles in the world. Poor velocity tracking
can lead to the robot taking more motion time than planned, creating uncertainty in cycle time for tasks. As
reported in our results in Figure 22, min-jerk has lower tracking errors in both position and velocity across
both the robots. We observed a mean position error of 0.00117 radians and 0.00085 radians for min-acc and
min-jerk on the UR5e robot, both within the 0.0017 radians accuracy margin of the joint encoders. On the
UR10 robot, we found the mean position error to be 0.00250 radians and 0.00133 radians for min-acc and
min-jerk respectively. We suspect the the larger position error on the UR10 to be because of the robot being
physically larger, thereby requiring more dynamics compensation at high speeds compared to the UR5e.
The position error for min-acc is also larger than the accuracy margin of the encoder.

To closely examine the difference in position error between min-acc and min-jerk on the UR10, we plot
one executed trajectory from the trials in Figure 23. We observe that the robot with min-acc, the robot
has a large spike in position error at the start of the trajectory while in min-jerk there is no steep increase
in error at the start. We suspect this spike in min-acc at the start to be because of the robot not being
able to instantly accelerate to the maximum acceleration limit. With min-jerk, we gradually increase the
acceleration, thereby minimizing tracking error due to delay in robot’s acceleration. While one could feed
a feed forward torque to help the robot accelerate more quickly, sending torque commands is not possible
in many industrial robots including the UR10 and UR5e.

Our motion times formin-jerk were [0.98, 1.57, 2.45] seconds and [0.87, 1.34, 2.16] seconds on the UR5e and
UR10 respectively, where the numbers map to mean, 75th percentile and 98th percentile. Our motion times
for min-acc were [1.02, 1.59, 2.83] and [0.92, 1.52, 2.49] on the UR5e and UR10 respectively.

As part of our real robot experiments, we also timed the whole pipeline, starting with when cuRobo gets
a planning query and completes computing a plan, followed by when the robot starts moving, and finally
when the robot completes trajectory execution. We found cuRobo to complete planning within 100ms on
average for both UR5e and UR10 robots. We observed on average a delay of 58ms and 68ms between when a
trajectory is sent to the UR ROS driver andwhen the robot starts moving on the UR5e and UR10 respectively.
We plot the time it takes overall reach a target pose and the split between planning, delay, and execution
in Figure 24. We see that cuRobo takes [6.02%, 6.62%, 9.12%] and [6.67%, 7.93%, 9.13%] of the time in the full
pipeline on the UR5e and UR10 respectively inmin-jerk mode. The delay accounts for 5% and 6% of the time
on 98th percentile on UR5e and UR10 respectively. The robot is in motion [90%, 92%, 94%] and [89%, 90%,
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Figure 23: The planned trajectory and the followed path is shown for the UR10 robot in position space
and velocity space in the top two grid locations. We plot the planned trajectory’s joint acceleration in the
middle plot. We plot the sum of the absolute error in tracking position and velocity across all joints in the
bottom two grid locations. We see the effect of large jerk at near the start time-steps of the velocity error
and position error in (a) while (b) has a more flat error.
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Figure 24: The time taken to plan and execute a trajectory across the two robots is plotted on the left. On
the right, we plot the time split between planning (Plan), delay between sending a trajectory and the robot
starting to move (Delay), followed by the time the robot is in motion (Execution).
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Figure 25: In the top row, we show the UR10e robot avoiding an obstacle by using cuRobo for motion
generation in combination with an ESDF map that was built with nvblox. The second row shows a Kinova
Jaco robot grasping an object by using cuRobo to generate motions for moving to the grasp pose and lifting
the object. The bottom row shows coordinatedmotion generation with a dual UR10e robot setup in NVIDIA
Isaac Sim. The twoUR10e robots start at a collision-free configuration andmove around each other to reach
their respective target poses given by red and yellow colored cubes.

92%] on UR5e and UR10 respectively. A common technique to reduce planning overhead in cycle time is
to plan for the next sequence of targets while the robot is executing it’s current trajectory. This has been
leveraged with existing planners as they can take significantly longer planning times, in the range of 2.5
seconds. However, this can prevent the robot from reacting to any world or task changes between motions.
With cuRobo we can plan the next motion after executing the current trajectory as we only take 6% of the
cycle time on average. This also simplifies the robot programming pipeline, as computational tasks can be
executed in serial.

6.4 Deployment on different Robot Platforms

We deployed cuRobo on few different robot platforms as shown in Figure 25, with no changes to param-
eters in trajectory optimization. We created the robot spheres for these robots along with a collision-free
rest configuration. We then called the inverse kinematics, geometric planning, and trajectory optimization
methods.

First, we deployed cuRobo on a UR10e with nvblox [36, 39, 68] to perform collision checking between
the world and the robot as shown in Figure 25. We use nvblox to generate a euclidean signed distance
field (ESDF) map of the world, by scanning with a realsense D-415 camera attached to the end-effector. We
then generate motions for the robot to go around obstacles. Next, we deployed on a Kinova Jaco arm as
shown in Figure 25, where we implemented a PD controller in the velocity space to command the generated
trajectory. We also tested coordinated motion generation for a dual arm UR10e robot setup in NVIDIA Isaac
Sim and preliminary results are promising as cuRobo finds collision-free paths to move both arms to their
targets as shown in Figure 25.
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6.5 Summary

We first compared the quality of motions generated from cuRobo in Section 6.1 and showed that cuRobo
generates better solutions than existing techniques. We then showed in Section 6.2 that cuRobo generates
these high quality solutions in a fraction of the time taken by existing methods across different comput-
ing platforms including a 15W NVIDIA Jetson device. We then compared the compute time across sub-
components, inverse kinematics, geometric planning, and trajectory optimization and showed double digit
speedups compared to existing implementations. We validated our motion generation approach on two
robots in Section 6.3, a UR5e and UR10 robot, both tracking the minimum jerk high-speed trajectories from
cuRobo with position errors below the accuracy margin of the joint encoders. We also showed our approach
working on different robot platforms in Section 6.4.

7 Component Analysis

We study the effect of different components in cuRobo’s trajectory optimization, starting with collision cost
formulation, followed by the effect of number of parallel seeds in trajectory optimization, and then the effect
of different parameters in our numerical optimization solvers.

7.1 Collision Cost Formulation

We first analyze the impact of different collision cost formulations on success of the optimization problem
in Figure 26. We ran our motion generation pipeline without geometric planning and 500 IK seeds. We ran
experiments without particle-based optimization, with particle-based optimization, and with 1 and many
seeds. From the results of this experiment, we make the following observations:

· Increasing activation distance from 0cm to 2.5cm improves success rate by 27%, having the largest
impact in success rate.

· Using continuous collision checking (swept) improves success rate further by 4% when compared
to only using an activation distance of 2.5cm.

· Speed metric improves success rate further by 2% across the dataset.

We found activation distance is critical in improving success rate as we perform trajectory optimization at
a coarse scale of a few timesteps(32-50) and then interpolate the trajectory to a fixed dt of 0.025 to validate
success. After this interpolation, a collision-free trajectory can move into regions of collision and lead to
failure. In addition, having an activation distance adds smoothness to the cost term, making it easier for
an optimization solver to minimize collisions. Our continuous collision checker checks collisions between
timesteps by linearly interpolating in the task space, approximating linear interpolation in the joint space.
This improves the success rate by 7% with tuned TO seeds and zero activation distance. The improvement
diminishes with activation distance where it only improves by 3%.

𝜂 = 0 𝜂 = 0+Swept 𝜂 = 0+Swept+Speed 𝜂 = 2.5cm 𝜂 = 2.5cm+Swept 𝜂 = 2.5cm+Swept+Speed
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Figure 26: We compare the effect of different metrics in computing world collision cost. We start with
a traditional formulation of collision cost where we only add a cost when robot is in collision with the
world 𝜂 = 0, followed by addition of our continuous collision checking implementation 𝑆𝑤𝑒𝑝𝑡 , and then
the speed metric introduced in [7]. We then add an activation distance of 2.5 cm to these metrics.
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Figure 27: Effect of Speed Metric during Trajectory Optimization is visualized in the dresser environment.
The left robot in each frame uses the speed metric during optimization, enabling the solver to move out of
collision (in the middle image). The right robot in each frame does not use the speed metric and as a result
speeds through the high cost collision region.
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Figure 28: The improvement in success rate across the 2600 problems in our dataset as we increase the
number of trajectory optimization seeds is shown in the top plot. We also see that the use of geomet-
ric planning to seed trajectory optimization (GP1, GP4, GP12) increases the success rate to 96% with an

increase in planning time. We plot the 75th percentile Motion Time on the bottom right plot across the
number of seeds.

The effect of speed metric is observable at an activation distance of 0.0 cm on trajectory optimization with 1
seed, where it provides a 5% improvement over LBFGS and also over particle+LBFGS.This effect diminishes
when we use many parallel seeds as a collision-free path is obtained through other seeds. We visualize the
effect of speed metric in Figure 27, where the use of speed metric enables the optimization solver to find
a path that is collision-free while without the metric, the solver ends up speeding through the high cost
region.

From the results in Figure 26, we see that a naive implementation of collision cost with a gradient based op-
timizer and 1 seed achieves a success rate of 38%. Adding an activation distance, as introduced by [7] would
bring this to 65%, followed by addition of a continuous collision checking would bring this to 69%. Addi-
tion of the speed metric from [7] would increase this further to 71%. Adding a particle-based optimizer to
initialize gradient-based solver would increase the success to 76%. Finally, running trajectory optimization
across many seeds would increase the success rate to 85%.

Overall, our application of existing techniques from [7] in combination with our continuous collision check-
ing module and many parallel seeds for trajectory optimization improves the success rate from 38% to 85%,
enabling cuRobo to solve 85% of the motion generation problems within 1 attempt.
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Figure 29: The slowdown in planning time as we increase number of seeds used in trajectory optimization
is visualized across the 100 problems on cage-panda environment. The slowdown is more significant on the
NVIDIA Jetson Orin as it has lower number of SMs compared to a RTX 4090.

7.2 Effect of Parallel Seeds

In an ideal setting, we would want to run as many parallel seeds of optimization as possible and pick the
best solution. However, as we reduce the compute available for motion generation, the number of parallel
seeds used can have a significant impact on compute time. We study the interaction between number of
seeds and compute time we ran motion generation on the 100 problems from the cage-panda environment
with varying number of trajectory optimization seeds across the three compute platforms. We used 500
IK optimization seeds and also run particle based optimization to initialize L-BFGS in these experiments.
We observed that on a RTX 4090, the compute time only changes by 8ms from using 4 seeds to 48 seeds
while it changes by 158ms and 417ms on the ORIN at MAXN and 15W respectively. We plot these results
in Figure 29.

Next, we study the impact of trajectory optimization seeds on success and motion time in Figure 28. We
observed that increasing the number of parallel seeds for trajectory optimization increases the success rate
and also decreases the motion time starting at 48 seeds. Initializing trajectory optimization with collision-
free paths from our geometric planner also increases the success rate. However, using geometric planner to
initialize trajectory optimization doubles the planning time on most problems. In addition, we found that
the motion time was higher when trajectory optimization is initialized with a geometric planner. Based on
these results, we use 12 trajectory optimization seeds for most environments in our evaluation dataset and
increase this up to 28 for harder environments. We discuss the parameters used in Appendix B.3.

7.3 Line Search

The role of line search in gradient-based numerical optimization solvers is to find the best magnitude to
scale the step direction. A common strategy to find the best magnitude is by backtracking search, where
we start with a magnitude of 1 and reduce this value until some conditions are met. Two common condi-
tions used in many modern numerical solver libraries are weak-wolfe and strong-wolfe which we term wolfe
and st-wolfe in our comparisons. We also compare against no scaling of the step direction which we
term no-ls. We compare these options with our noisy line search technique introduced in Section 4. We
use [0.01,0.3,0.7,1.0] as the values for the noisy line search which we term noisy-ls. We also compare with
only 1 value for noisy line search [0.01,1.0] which we term noisy-ls-1. For wolfe and strong wolfe, we use
the values [0.0001,0.001,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0] in the line search. We evaluate these line search
techniques across the full dataset with 1 trajectory optimization seed initialized by 2 iterations of particle-
based optimization.

From Figure 30, we see that no-ls, noisy-ls-1, and noisy-ls all have a success rate higher than 70%, with noisy-
ls having the highest success rate of 75.69%. While most of these techniques lead to good success rate, the
impact of line search is more observable in the position error at the final timestep of the trajectory across
the dataset as plotted in Figure 30-(b). We found noisy line search to have the lowest error of 2.86 mmwhile
no line search ends up with an error of 4 mm. We observed wolfe and strong wolfe perform worse in both
success and position error across the dataset as for these line search techniques, we use a magnitude scale
of 0.0 if none of the chosen line search values satisfy the conditions.
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Figure 30: We compare the different line search techniques and their impact on trajectory optimization,
starting with no line search no-ls, followed by common line search methods weak wolfe wolfe and strong
wolfe st-wolfe. We compare these methods to our proposed noisy line search scheme noisy-ls. We also
compare to noisy line search with only two values [0.01,1] which we term noisy-ls-1.
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Figure 31: We compare Gradient Descent (GD) to L-BFGS with different history lengths, starting with the

success rate in the top plot. We also plot the 98th percentile position error in bottom left and the average
planning time on the bottom right.

7.4 Gradient Descent and Effect of history length in L-BFGS

We ran trajectory optimization with gradient descent as the optimizer, swapping out L-BFGS, but keeping
our noisy line search technique and found that it succeeded in 46% of the problems. Using particle-based
optimization to initialize gradient descent increased the success to 61%. However, the 98th percentile posi-
tion error was 4.94cm compared to L-BFGS’s 2.72cm. In addition, our efficient implementation of L-BFGS
enables us to compute step direction using L-BFGS within similar compute times to using Gradient Descent
upto a history length of 12. The gap in performance between gradient descent and L-BFGS is also visualized
on one trajectory optimization problem in Figure 32 where we see that L-BFGS with any history length
converges to the minimum within 100-200 iterations while gradient descent has not converged even after
500 iterations.

We also ran experiments to study the impact of history length in L-BFGS. L-BFGS approximates the hessian
by using the recent gradients and costs, which are stored in a history buffer. The more history L-BFGS
uses to approximate the hessian, the closer the hessian gets to the true hessian. However, with increasing
history, the compute required to compute the step direction also increases as shown in Figure 31-(b). To
allow for the best chance between methods, we run our method with tuned number of parallel seeds across
the dataset. We also compare the improvement we get with particle-based solver for initialization. From
Figure 31, we found that increasing history indeed improves convergence as seen by the improvement in
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Figure 32: The cost at every iteration on one trajectory optimization problem from our evaluation set is
plotted in (a) and the optimization after finding the optimal timestep is plotted in (b). We see that L-BFGS
converges within 100 iterations at a history of 15 and 25, while a history of 2 leads to requiring 200 iterations
to converge in (a). Gradient descent does not converge to a similar cost as L-BFGS even after 500 iterations.
We also show the reduction in cost during timestep optimization in (b), where gradient descent doesn’t
start improving until 400 iterations.

success rate and reduction in position error. And increasing history starts having an impact on planning
time at a value of 12. We chose a history of 4 for all our evaluations as we observed that the improvement
in success rate and position error was not significant.

7.5 Effect of Particle Optimization

Across analysis of many of the components, we compare the improvement we obtain with particle optimiza-
tion. We observed that since we only run 2 iterations of particle-based optimization, it only adds 2 ms to the
planning time on average while improving success. We observed that using two iterations of particle-based
optimization improved the success by 5% from 71% to 76% when running trajectory optimization with a
single seed. With multiple seeds, the success improved by 3%, from 82% to 85%.

8 Concluding Remarks

We formulated the global motion generation problem as an optimization problem and introduced techniques
from global optimization literature to efficiently solve them with accelerated parallel compute. We empiri-
cally validated our approach on a difficult set of motion generation problems for manipulators [52, 53] and
showed a 60× speedup over SOTA motion generation methods on a modern PC and a speedup of 28× on
a NVIDIA Jetson AGX ORIN at 60W. We release our implementations as a high performance CUDA accel-
erated library cuRobo with pytorch and python wrappers for easy integration in robotic pipelines. We will
discuss some limitations of our work and potential extensions in the next section.

8.1 Limitations & Open Research Problems

There are several open research problems in motion generation that our approach does not solve in it’s
current form. We hope that our results and framework can be leveraged to solve these problems. We list
some key problems below,
Global Reactive Motion Generation Our approach is currently limited to planning full motions, where
the robot starts from a static state. While we can extend our trajectory optimization to start from a non-
static state, reactive motion generation requires motions at a fixed solve rate and our approach can take
longer time on hard problems as shown by our longer 98th percentile time.
Constrained Motion Generation Our preliminary evaluation on pose constraints [69] during motion
such as maintaining orientation or height by adding a large weight to a running cost showed promise.
However, we did not evaluate rigorously and also did not implement constrained graph planning which
could be important for getting global guarantees.
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Task Sequencing andRoute Planning Finding the optimal sequence of poses to reach given an unordered
list is an important problem in the industry, often called Task Sequencing [70] and route planning [71]. We
do not explore this task in this work but do see point to point motion generation to be a critical component
of finding the optimal sequence. Task and motion planning [66, 72, 73] could also leverage our point to
point motion generation for faster feasibility checks and finding more optimal sequence of motions.
Contact-Rich and Full-Dynamics TrajectoryOptimizationOur current cost terms are focused on kine-
matic trajectory optimization with limits on position derivatives. Interacting with objects in the world
would require optimizing over contacts, e.g. with contact implicit formulations [74] of trajectory opti-
mization. Trajectories that minimize torques or other parts of dynamics would require optimizing over
the robot’s dynamics. Integrating existing GPU accelerated dynamics implementations [75–77] into cuRobo
could potentially solve for trajectories over dynamics.
Robotics SolversWe implemented MPPI, gradient descent and L-BFGS in our framework to solve motion
generation. Robotics focused numerical solvers are showing promise in quicker and better convergence
compared to standard numerical solvers [78, 79] on robotics tasks. Formulating parallel compute friendly
versions [80, 81] of these solvers could reduce the compute time even further and also enable new features
in cuRobo such as solving with hard constraints.
Collision Avoidance from partial world sensing Our approach does not tackle partial perception and
instead assumes that we can obtain a complete representation of the world. Incorporating learned repre-
sentations of the world [34, 64, 82] into our collision cost term could extend our motion generation method
to work in unknown environments.
Accelerating Computational Blocks Our approach encapsulates the key components in motion gener-
ation into modular components and enables researchers to develop improved algorithms for these com-
ponents without requiring full expertise on the stack. We hope that this broadens our library’s audience
to experts in non-robotics fields. We think that this is important as researchers in computer architecture
are starting to accelerate manipulator algorithms [75, 83] and providing a reference SOTA implementation
along with benchmarks can greatly reduce the entry barrier for researchers to accelerate robotics. As a step
in this direction, cuRobo has been used by computer architecture researchers to reduce memory bottlenecks
in motion generation with reduced precision techniques [84].
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A Trajectory Optimization: Cost Terms & Solvers

As mentioned in Section 2, we setup our trajectory optimization problem to optimize over the joint con-
figurations 𝜃𝑡 ∈[1,𝑇 ] across 𝑡 timesteps. As our implementation of L-BFGS can only handle box constraints
on optimization variables, we write all our constraints as cost terms with large penalties. We discuss in de-
tail the cost terms in our trajectory optimization, followed by our technique to optimize for the resolution
of time discretization. We then discuss different trajectory profiles that can be obtained using cuRobo in
Section A.6 and details on our solvers in Section A.7.

A.1 Pose Reaching Cost

Themain goal of our trajectory optimization problem is to reach a target pose𝑋𝑔 for the robot’s end-effector
at the final timestep 𝑇 . We implement this cost leveraging our differentiable kinematics function 𝐾𝑒 (𝜃𝑇 )
which gives us the end-effector’s position 𝑝𝑇 ∈ R3 and the unit quaternion 𝑞𝑇 . We use a L-2 norm for
computing the linear distance (i.e.,| |𝑝𝑔 − 𝑝𝑇 | |) and use the quaternion distance for orientation 𝑞⊤𝑔 𝑞𝑇 . We

scale these distances 𝑑 by 𝛼0 log cosh(𝛼2𝑑) to compute the cost. This scaling enables our cost to have both
high accuracy near the goal and stable gradients when far away from the goal as shown in Figure 33-(a).
Our pose reaching cost term is written as,

𝐶goal (𝑋𝑔, 𝜃𝑇 ) = 𝛼0 log cosh(𝛼2 | |𝑝𝑔 − 𝑝𝑇 | |2) + 𝛼1 log cosh(𝛼3 (𝑞⊤𝑔 𝑞𝑇 )) (14)

While we can also add this cost with a smaller weight across timesteps to encourage the robot to reach the
target pose as quickly as possible (i.e. a running cost), we found this running weight to be sensitive across
environments and instead add a weighted joint space path length minimization cost which is discussed next.
We use 𝛼0 = 2000, 𝛼1 = 350, 𝛼2 = 100, and 𝛼3 = 100 in our experiments.

For tasks that require reaching a joint configuration, we use a similar cost term in the joint position space,

𝐶cspace (𝜃𝑔, 𝜃𝑇 ) = 𝛼4 log cosh(𝛼5 | |𝜃𝑔 − 𝜃𝑇 | |22) (15)

where 𝛼4 = 5000, 𝛼5 = 50.

A.2 Path-Length Minimization & Smoothness Costs

Our path length minimization cost term is a squared L-2 norm on the joint acceleration across
timesteps

∑
𝑡 ∈[0,𝑇 ] | |:𝑞𝑡 | |22. This term encourages the robot to find a trajectory that has the least acceleration,

thereby resulting in ramp up of velocity in one direction for the joints when feasible to reach the goal as that
velocity profile will result in the least acceleration. We also have a term that minimizes jerk

∑
𝑡 ∈[0,𝑇 ] | |;𝑞𝑡 | |22,

penalizing large instantaneous changes in acceleration which can cause poor trajectory tracking as dis-
cussed in Section 6.3.

We also want the robot to stop at the final timestep 𝑇 which can be encouraged by adding a zero velocity
cost term for the final timestep 𝑇 . However, if we only penalize velocity to be zero at the final timestep,
the trajectory obtained could have very large acceleration and jerk. We hence also want to have zero ac-
celeration and zero jerk at the final timestep 𝑇 . We can achieve this by penalizing velocity at the last three
timesteps 𝑡 ∈ [𝑇 − 3,𝑇 ]. Similarly, to encourage smooth acceleration at the start of the trajectory, we can
add velocity constraints for the first three timesteps 𝑡 ∈ [0, 2]. Empirically, we found adding these velocity
constraints made our optimization become sensitive to the weights we used for these constraints between
optimization problems. An alternative way to formulate this constant state criteria is to implicitly make
the first and last three states be the same, similar to [10]. We hence use this implicit formulation to ensure
smooth acceleration throughout the trajectory. The cost terms for smoothness are,

𝐶smooth =

∑︁

𝑡 ∈𝑄
𝛼6 log cosh(𝛼7 9𝑞𝑡 ) +

∑︁

𝑡 ∈[0,𝑇 ]
(𝛼8 | |:𝑞𝑡 | |22 + 𝛼9 | |;𝑞𝑡 | |22) (16)

where we use 𝛼6 = 5000, 𝛼7 = 50, 𝛼8 = 5000 and 𝛼9 = 1.0.

In addition to the above cost terms, we have three constraints for trajectory optimization: (1) enforcing
joint limits, (2) avoiding self collisions between links of the robot, and (3) avoiding collisions between the
robot and the world. We discussed the collision terms in Section 3. We will discuss enforcing joint limits
next in Section A.3.
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Figure 33: Our attraction cost profile has a tighter curve shown by the red line, compared to a standard l-2
norm which shown by dotted black line in (a). Our joint limit cost profile, shown in (b) transitions smoothly
from a quadratic increase to a linear increase avoiding sudden linear jump that can happen right at a limit
where the limit is shown by the red vertical dotted line.

A.3 Enforcing Joint Limits

To minimize the optimization from hitting joint position, velocity, acceleration, and jerk limits we add a
smooth cost motivated by the potential function introduced by Ratliff et al. [7]. For a joint value 𝑞𝑡 , we
define the cost term as

𝑐𝑝 =




𝑞𝑙 − 𝑞𝑡 + 0.5𝜂2 if 𝑞𝑡 < 𝑞𝑙
0.5
𝜂2
(𝑞𝑙 − 𝑞𝑡 + 𝜂2)2 if 𝑞𝑙 + 𝜂2 > 𝑞𝑡 ≥ 𝑞𝑙

𝑞𝑡 − 𝑞𝑢 + 0.5𝜂2 if 𝑞𝑡 > 𝑞𝑢
0.5
𝜂2
(𝑞𝑡 − 𝑞𝑢 + 𝜂2)2 if 𝑞𝑢 − 𝜂2 < 𝑞𝑡 ≤ 𝑞𝑢

0 otherwise

(17)

where 𝑞𝑢, 𝑞𝑙 are the upper and lower joint limits respectively. The parameter 𝜂2 defines the threshold before
a joint limit from where we start penalizing the joint value. The profile of this cost is shown in Figure 33-
(b). We use a similar cost term for velocity, acceleration, and jerk limits, all with an activation distance of
𝜂2 = 0.1.

A.4 Time-step Descretization and Temporal Weight Scaling

To perform trajectory optimization across the full workspace of the robot, we need to be able to solve for
both very short and very large motions. One way to do this is to attempt to solve the trajectory optimization
problem, first with a very large number of timesteps 𝑡 , and then sequentially reduce the timesteps until the
optimization fails to converge as done by Ichnowski et al. [85]. However, this requires us to run sequential
calls to trajectory optimization which can be slow on the GPU, especially when we have to reinitialize all
buffers that are affected by the number of timesteps 𝑡 . Another option is to treat 𝑑𝑡 also as part of the
optimization variables, which we do not explore in this work.

In our current implementation, we fix the number of timesteps 𝑡 and instead change the time discretiza-
tion 𝑑𝑡 between timesteps to be able to solve motions of all ranges as shown in Algorithm 4. To run op-
timization with different 𝑑𝑡 , we scale all our cost terms that relate to velocity, acceleration, and jerk to
account for the change in magnitude of 𝑑𝑡 . We first run trajectory optimization with a very large 𝑑𝑡𝑖 of 0.25
seconds and then scale the output trajectory to find a 𝑑𝑡𝑜 that pushes the velocity, acceleration or jerk to
the robot’s limits. We then scale our weights by 𝑑𝑡𝑜 and rerun trajectory optimization with 𝑑𝑡𝑜 to get the
final trajectory. We then re-time this final trajectory to find the best 𝑑𝑡𝑓 . We empirically found that not
penalizing jerk during the first trajectory optimization led to better convergence.
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Algorithm 4: Time Discretization

Init : Θ𝑖 , 𝑑𝑡𝑖
Output: Θ𝑓 , 𝑑𝑡𝑓

1 Θ𝑜 ← traj opt(Θ𝑖𝑛𝑖𝑡 , 𝑑𝑡𝑖 ) ⊲ run trajectory optimization with initial dt

2 𝑑𝑡𝑜𝑝𝑡 ← retime(Θ𝑜 ) ⊲ find dt that pushes trajectory to robot limits (velocity, acceleration or jerk)

3 scale traj opt(𝑑𝑡𝑜𝑝𝑡 ) ⊲ Scale weights by new dt

4 enable jerk cost() ⊲ enable jerk minimization cost term

5 Θ𝑓 ← traj opt(Θ𝑜 , 𝑑𝑡𝑜𝑝𝑡 ) ⊲ run trajectory optimization with new dt

6 𝑑𝑡𝑓 ←retime(Θ𝑜 )⊲ get final dt by retiming the final trajectory

A.5 Finite Difference for State Derivatives

Our optimization variables are in the joint position space 𝑞𝑡 ∈[0,𝑇 ] while we have cost terms in the velocity,
acceleration, and jerk spaces. A standard technique to compute time derivatives is by backward finite differ-
ence, where we finite difference position to get velocity, then finite difference velocity to get acceleration,
and finally finite difference acceleration to get jerk. However, we observed oscillations on the real robot
when executing high-speed trajectories due to the low accuracy of backward finite difference in computing
velocities. We then tried central difference and that got rid of the oscillations on real robot execution. The
optimization also required more iterations to converge compared to backward difference.

We investigated finite difference approaches from Pose graph optimization literature and found the five
point stencil method to be a good fit for computing time derivatives in our trajectory optimization problem.
With a five point stencil method, we read five adjacent joint positions to compute velocity, acceleration,
and jerk values with much higher precision than central or backward difference. An added benefit of five
point stencil method for computing time derivatives is that any gradients from time derivatives have a
blending effect on the position space [86]. The improved accuracy and the blending effect reduced the
number of iterations required to converge by 50%. The trajectories obtained with the stencil approach
also ran successfully on the real robot as shown by our tracking results in Section 6.3. Across all these
methods for computing derivatives, we observed aliasing artifacts in the acceleration space when our jerk
minimization cost was enabled. The aliasing was larger in backward difference, reduced in the central
difference approach and even smaller in the five point stencil difference. This artifact could be reduced
further by using even larger number of points in the stencil. However, we did not observe any issues on the
real robot when executing the five point stencil trajectories. In our current implementation, we smooth out
the acceleration artifacts with an average sliding window filter after convergence.

A.6 Trajectory Profiles

Trajectory profiles have been studied [4, 87] as a post processing step to geometric path planning, where
methods try to obtain a time-optimal solution with bounded limits on velocity, acceleration, and possibly
jerk. Kunz and Stilman [4] explored a technique to traverse waypoints without stopping at them by relaxing
the accuracy in reaching the waypoints. Their approach was able to obtain trajectories with bounded veloc-
ity and acceleration. However, their trajectories have very large jerks as shown in Figure 34-(a). Ruckig [87]
explored introducing jerk constraints, which constrained the solution to have zero velocity, acceleration,
and jerk at the starting timestep and the final timestep. However, their solution was only optimal when
the path had no waypoints between the start and goal configuration. They provide a solution to also solve
for intermediate waypoints but do mention that it’s not the optimal solution (ruckig documentation). In
addition, we were unable to evaluate their waypoint solver as it is not accessible without a license.

Given that there is no technique that can output bounded jerk, acceleration, and velocity trajectories with
zero velocity, acceleration, and jerk at start and final timesteps, we use our cost terms from Sec A.2 to
encourage this trajectory profile. Our framework also enables getting different trajectory profiles by scaling
the relative weights between cost terms as shown in Table 1 and Figure 34. We also integrate our library
with Kunz and Stilman’s method [4] through a python wrapper (github link) to output bounded velocity
and acceleration trajectories for applications that allow for large jerks.
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Constraints Acceleration-l2 Jerk-l2 Effect

None None None Starts with non-zero velocity.
None All timesteps None Starts with non-zero velocity.
9𝑥𝑡 ∈[0,𝑇 ] = 0 None None Not smooth.

9𝑥𝑡 ∈[0,𝑇 ] = 0 All timesteps None Large Jerk at first, last 𝑡 .
9𝑥𝑡 ∈[0,𝑇 ] = 0 All timesteps All timesteps Low jerk.
9𝑥𝑡 ∈[0,3],[𝑇−3,𝑇 ] = 0 All timesteps All timesteps Low jerk, hard to optimize.

𝑥𝑡 ∈[1,3], 𝑥𝑡 ∈[𝑇−3,𝑇−1] = 𝑥0, 𝑥𝑇 All timesteps All timesteps Low jerk, easier to opimize.

Table 1: Trajectory profiles by penalizing position derivatives.
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Figure 34: We show the different trajectory profiles possible leveraging cuRobo’s trajectory optimization.
The first way to get a bounded acceleration and velocity profile is by using Kunz and Stilman’s trajectory
post processing [4], shown in (a). This can have very high jerks due to instantaneous accelerations. We
can obtain a better trajectory profile in cuRobo using a minimum acceleration cost as shown in (b), which
can still have instantaneous jerks. By adding a minimum jerk cost term, we can get an even smoother
trajectory profile as shown in (c).

A.7 Numerical Optimization Solvers

We design our solvers to take in a rollout class instance that provides a differentiable map from optimization
parameters to the total cost. Our rollout class also takes in a batch of queries and outputs a batch of total
costs. This batch query-able rollout class design allows us to use it for computing the cost for all samples in
a particle based solver in parallel. This also enables us to compute the differentiable maps for all line search
magnitudes in parallel. We illustrate thus design of our solvers and the rollout class in Figure 35. We detail
the L-BFGS step update in Algorithm 6 which follows the algorithm from Nocedal and Wright [45]. Our
algorithm for particle-based optimization is in Algorithm 5.

Oncewe compute the step direction, we have the option to clamp the step direction by𝛾 (𝑞𝐻−𝑞𝐿) to avoid the
step direction from exploding (i.e., out of numerical precision) due to large violations of soft constraints (e.g.,
collision term). Scaling step direction is a common technique to add robustness to a numerical solver and has
also been done in trajectory optimization previously by Ratliff et al. [7]. In the environments and problems
we tested, we did not see significant improvement with scaling the step direction and hence did not use it.
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Figure 35: The compute graph in a single iteration of optimization is shown for both Gradient-based and
Particle-based optimization in this figure (best viewed in color). The grey-block is the Rollout class that
computes the cost given a batch of action trajectories. We leverage parallel execution of Rollout class to run
parallel line search in gradient-based optimization and to compute cost across many samples in particle-
based optimization. The green blocks highlight the different cost terms used for motion generation.

Algorithm 5: Particle-Based Optimization

Data : Θinit, 𝐶 (·)
Param: 𝜎0, 𝑐min

Result: 𝜇
Init : 𝜇 ← Θinit, 𝜎 ← 𝜎0

1 for 𝑛 ← 0 to 𝑁 do ⊲ Run optimization

2 Θ𝑙 ←SAMPLE(𝜇, 𝜎)
3 𝑐𝑙 ← 𝐶 (Θ𝑙 )
4 𝜇, 𝜎 ← UPDATE(𝑐𝑙 ,Θ𝑙 , 𝜇, 𝜎)
5 end
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Algorithm 6: L-BFGS Step Update

Init : 𝑞 ← 𝛿Θ
1 𝑦[0,𝑘 ], 𝑠 [0,𝑘 ], 𝜌 [0,𝑘 ] ← sh(𝑦[0,𝑘 ],−1), sh(𝑠 [0,𝑘 ],−1), sh(𝜌 [0,𝑘 ],−1) ⊲ Shift Buffers

2 𝑦𝑘 ← 𝛿𝜃 − 𝛿Θ−1 ⊲ Update Buffers

3 𝑠𝑘 ← Θ − Θ−1
4 𝜌𝑘 ← 1/𝑦⊤

𝑘
𝑠𝑘

5 Θ−1, 𝛿Θ−1 ← Θ, 𝛿Θ ⊲ Store for next iteration

/* Serial compute */

6 for 𝑖 = 𝑘 − 1 to 𝑘 −𝑚 do
7 𝛼𝑖 ← 𝜌𝑖𝑠

⊤
𝑖 𝑞

8 𝑞 ← 𝑞 − 𝛼𝑖𝑦𝑖
9 end

10 𝑟 ← 𝐻 0
𝐾
𝑞

/* Serial compute */

11 for 𝑖 = 𝑘 −𝑚 to 𝑘 − 1 do
12 𝛽 ← 𝜌𝑖𝑦

⊤
𝑖 𝑟

13 𝑟 ← 𝑟 + 𝑠𝑖 (𝛼𝑖 − 𝛽)
14 end
15 ΔΘ← 𝑟

A.8 Tuning Weights & Parameters

Trajectory optimization with numerical solvers is often very sensitive to the weights used between cost
terms, especially when the solvers don’t solve for hard constraints directly. We found the following proce-
dure very helpful in finding a good set of weights for the different cost terms,

1. Start the tuning process with a large number of seeds for IK (e.g., 500) and trajectory optimiza-
tion (100). Also use a large number of timesteps (40) for trajectory optimization.

2. Tune pose cost term and collision cost term to solve IK.

3. Then, tune Pose cost and smoothness cost for trajectory optimization with collision costs disabled.

4. Finally, tune collision cost weights for trajectory optimization.

Once you have a good set of weights, start reducing the number of seeds until the weights do not work any-
more. At this step in the process, we found increasing the weights for the pose cost improved success rate.
Once we tuned our weights following these steps, the weights transferred across different environments
and also across different robot platforms.

A.9 Evaluating Optimized Trajectories

Our inverse kinematics solver and trajectory optimization solver optimizes over many parallel seeds. After
completing iterations, we often foundmore than one valid solution from these seeds. For inverse kinematics,
we return the solution with a lowest weighted sum of pose error and the distance of the solution to the
current joint configuration. For choosing between the valid trajectory optimization seeds, we use a blended
sum of the pose error, maximum jerk, and motion time.

B Benchmarking Details

B.1 Dataset & Evaluator

We benchmarked motion planning with the 800 problems from the motion benchmaker dataset [52] and
the 1600 problems from the mpinets dataset [53](Version 1.0.2). The motion planning problems available
through the motion benchmaker dataset [52] had the Franka Panda’s gripper at a 16cm opening which
is outside of the real Franka Panda’s 8cm limit. We reduce the radius of the obstacle (cylinder) that was
the between the gripper by 4cm to make it fit within the Franka Panda’s real gripper limits. The mpinets
dataset [53] uses a gripper width of 2.5cm, which we set in our robot configuration during benchmarking.
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Planning Environment IK seeds TO seeds Time-steps Force Graph

Bookshelf Small Panda 30 12 32 False
Bookshelf Tall Panda 30 12 32 False
Bookshelf Thin Panda 30 12 32 False

Box Panda 30 12 32 False
Box Panda Flipped 30 12 32 False

Cage Panda 100 16 32 False
Table Pick Panda 30 12 32 False
Table under Pick Panda 112 28 44 True

Table Top 30 12 32 False
Merged Cubby 30 12 32 False
Cubby 30 12 32 False
Dresser 30 12 32 False

Cubby-task-oriented 100 16 32 False
Dresser-task-oriented 100 20 32 False

Table 2: Planning Parameters used in cuRobo across the benchmark.

We retooled the evaluator that was written by [53], which is available at github.com/fishbotics/robometrics
along with the dataset.

B.2 Tesseract Baseline

We used Tesseract planning with commit 1627231f3d, compiled with Release CMAKE flag for our exper-
iments. As discussed in Section A.6, we add costs to Trajopt that have the first three and last three timestep
velocity to be at zero. We also set smooth acceleration=True and set smooth velocity=False to get the
solution as mentioned by Tesseract developers (github-discussion). We tried setting smooth jerk=True,
however this caused the planner to fail on many planning problems and the trajectories also exhibited
aliasing in the acceleration.

In addition, we couldn’t run the Cartesian planning from Tesseract. We compute 20 IK solutions using
cuRobo’s collision-free IK solver for each problem and use one of these solutions per attempt of planning in
Tesseract. We found that Tesseract failed to find many trajectories without offsetting the collision margin
by -1.5cm. Hence, for all our comparisons we use a collision margin of -1.5cm. In addition, the OMPL
planning phase failed to find solutions with an offset of -1.5cm, hence we further added an offset of -2cm
only to the OMPL planning phase. We enable bullet continuous collision checking for the whole pipeline
in Tesseract to leverage the fastest implementation of collision checking in their pipeline. We provide the
Tesseract workspace with all changes at tesseract ws and also develop a python wrapper for benchmarking
which is available at github.com/balakumar-s/tesseract wrapper.

B.3 cuRobo Parameters

We use an activation distance 𝜂 of 2.5cm and use a scalar weight of 5000 for all cost terms that are soft
constraints. We tuned the number of trajectory optimization (TO) seeds on a per scene level depending on
average number of attempts needed to succeed when we ran with only 4 seeds. We used 30 seeds for Inverse
Kinematics for most problems. For motion planning problems in Table under Pick Panda, we generate seeds
for trajectory optimization from our geometric planner (Section 5) as we found that we need more than 100
linearly interpolated seeds to succeed. For trajectories that require many switching points, we use a larger
number of timesteps. The values used across the scenes are shown in Tab. 2. We run 100 fixed iterations
followed by 300 variable iterations for the trajectory optimization. We run 2 iterations of particle-based
optimization before running L-BFGS for IK and Trajectory optimization. For our evaluations, we have
a 2 second warm-up phase where the tensors need to be initialized, followed by CUDA Graph creation
on the GPU. After this warm-up phase is complete, we can change the environment obstacles, the start
configuration, and the goal before querying a solution for a motion generation problem.
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C Additional Results

C.1 Comparison to pyBullet and RRTStar

In addition to comparing to Tesseract, we compare our method with pybullet wrapped OMPL implemen-
tations which are commonly used in many research efforts as they are accessible from Python [66]. We
specifically compare to geometric planning methods, RRTConnect [55] which is a bidirectional feasible
planner that is shown to be the fastest in finding a path (while the path may not be optimal) and AIT-
Star [88] which is an asymptotically optimal planner that is proven to converge to the shortest path given
infinite time. We use their implementations from OMPL [54] with PyBullet [24] for collision checking. We
call them PyBullet-RRTConnect and PyBullet-AITStar, respectively. We only compare on the motionbench-
maker dataset [52] as we found it. To be significantly slower compared to trajectory optimization methods
while also producing longer c-space path lengths as shown in Figure 36. We found PyBullet-RRTStar to
be faster than Tesseract-GP which uses RRTConnect from ompl wrapped with Bullet’s continuous collision
checker.
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Figure 36: We compare the time taken by different motion generation methods in linear time scale on
the left and log time scale in the middle. We see that cuRobo’s curve is significantly faster than PyBullet.
On the right, we plot the C-Space path length across methods where we see again that cuRobo produces
shorter paths than PyBullet-AITStar.

C.2 Compute Time Coverage Plot

We plot the distribution of compute time across the dataset for methods in Tesseract and cuRobo in Figure 37.
From the distribution across different compute devices, we can observe that cuRobo is faster than both
Tesseract and Tesseract-GP. Our geometric planner cuRobo-GP is faster than our trajectory optimization
approach cuRobo across different compute platforms.

C.3 Real RobotQuirks

We record some real robot quirks we observed when deploying our trajectories on the Universal Robots.
First, we observed poor tracking as we increased the maximum allowed acceleration during trajectory op-
timization, and also occasionally at peak velocities of the robot as shown in Figure 38. The UR robots come
with safety features enabled by default, which restricts the speed of the robot. We overcame this issue by
selecting the least conservative safety configuration which set the maximum power limit of the robot to
1000W (from 300W).

A second issue we observed with the Universal Robots was that trajectories with velocities computed
through backward difference caused oscillations at high speeds. Switching to higher accuracy finite dif-
ference approaches such as central difference or five point stencil difference fixed this issue.
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Figure 37: We compare the planning time obtained by our approach cuRobo to Tesseract.

2

1

0

Po
sit

io
n 

ra
d.

0
1

2
3

4
5

gt_0
gt_1

gt_2
gt_3

gt_4
gt_5

2

1

0

1

Ve
lo

cit
y 

ra
d.

 s
1

5

0

5

Ac
ce

le
ra

tio
n 

ra
d.

 s
2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time(s)

40

20

0

20

Je
rk

 ra
d.

 s
3

2

0

2

Po
sit

io
n 

ra
d.

0
1

2
3

4
5

gt_0
gt_1

gt_2
gt_3

gt_4
gt_5

2

0

2

Ve
lo

cit
y 

ra
d.

 s
1

2.5

0.0

2.5

5.0

Ac
ce

le
ra

tio
n 

ra
d.

 s
2

0.0 0.5 1.0 1.5 2.0
Time(s)

20

10

0

10

Je
rk

 ra
d.

 s
3

(a) Minimum Acceleration (b) Minimum Jerk

Figure 38: UR5e robot clipped peak velocities when executing some motions as show in (a) and (b). This
happens when the robot’s safety mode is enabled. Once we disabled the safety mode, the robot was able
to execute trajectories with accelerations up to 12 radians𝑠−2, reaching maximum joint velocities.
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D cuRobo Library

Implementing the algorithms discussed in this work requires a robotics toolkit that works seamlessly with
CUDA code, interfaces with robot configuration files (urdf, usd), and also enables users to implement their
own modules and cost terms without adding large overheads to the pipeline. Additionally, most of our
algorithms run native on aGPU, requiring the framework to handle GPU tensors. We couldn’t find a robotics
toolkit that had these features sowe built our own robotics framework cuRobo. We build our frameworkwith
PyTorch as the front-end enabling us to leverage the vast range of tools built by the PyTorch community.
We specifically leverage the following from PyTorch:

1. Differentiable mapping between operations on tensors, enabling us to build a compute graph that
contains the forward and backward passes for use with our numerical optimization solvers.

2. Profiling tools to analyze compute graphs and optimize bottlenecks.

3. CUDA code compilation and execution with pyTorch tensors enables us to write sophisticated
high-performance algorithms as CUDA kernels and access them from python.

4. CUDA Graph creation and execution reduces kernel launch overheads, we found this to reduce
our compute time significantly (10× faster) as we run 25 iterations of our optimization as a single
CUDA graph call.

In addition to the above tools available in PyTorch, many existing GPU libraries also expose interface to
PyTorch such as Warp [89], Kaolin [90], and PyPose [91], making it easier for users to use these libraries
with our library. We leverage NVIDIAWarp [89] in our library to write simple user-defined cost terms such
as squared l2-distance Eq. 15, our smoothness cost term Eq. 16, and our joint limit cost term Eq. 17. An
example warp kernel and it’s interface with PyTorch is shown in Fig. 40. We also leverage Warp’s geometry
kernels to compute the collision cost term for obstacles represented as meshes. We also developed a PyTorch
API to nvblox [68] which we use to compute collision cost when obstacles come from a depth stream. We
are releasing the PyTorch API to nvblox as a separate library and provide interfacing code for use in cuRobo.

Our library is designed as shown in Fig. 39with a Rolloutmodule for rolling out the dynamics and computing
the cost terms, an Optimizationmodule which contains numerical solvers, a Geometry module that contains
signed distance functions, a Geometric Planner module for graph-based planning, and a wrapper module
that provides a high-level api to motion generation tasks. We also provide differentiable PyTorch layers for
kinematics and collision costs, for potential applications inside a neural network and also as part of a loss
function motivated by recent successes in SDF-based rewards for contact-based manipulation [92].

Differentiable PyTorch Layers 

Cost Terms

Dynamics Model Sampling-Based

Gradient-Based

Geometric Planner

Inverse Kinematics

Global Planner

Trajectory Optimization

Model Predictive 
Control

Kinematics

Geometry 

Oriented 
bounding box

Meshes via 
warp

Depth camera 
via nvBlox

Self-Collision

User 

Pose/CSpace

Smoothness & 
Bounds

Kinematics Geometryq

Rollout Optimization Wrapper

Figure 39: We illustrate the design of modules in our GPU accelerated library cuRobo. We have two core
modules, a Rollout module that computes the cost given actions, and an Optimization module that has
solvers to run numerical optimization. In addition, we have a Wrapper module that provides an high-
level API to motion generation. We also provide differentiable PyTorch layers for kinematics and collision
checking for use in neural networks.
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1 @wp.kernel

2 def forward_l2_warp(

3 pos: wp.array(dtype=wp.float32),

4 target: wp.array(dtype=wp.float32),

5 target_idx: wp.array(dtype=wp.int32),

6 weight: wp.array(dtype=wp.float32),

7 out_cost: wp.array(dtype=wp.float32),

8 out_grad_p: wp.array(dtype=wp.float32),

9 batch_size: wp.int32 ,

10 horizon: wp.int32 ,

11 dof: wp.int32 ,

12 ):

13 tid = wp.tid()

14 # initialize variables:

15 b_id = wp.int32 (0)

16 h_id = wp.int32 (0)

17 d_id = wp.int32 (0)

18 b_addrs = wp.int32 (0)

19 target_id = wp.int32 (0)

20 w = wp.float32 (0.0)

21 c_p = wp.float32 (0.0)

22 target_p = wp.float32 (0.0)

23 g_p = wp.float32 (0.0)

24 c_total = wp.float32 (0.0)

25 # we launch batch * horizon * dof kernels

26 b_id = tid / (horizon * dof)

27 h_id = (tid - (b_id * horizon * dof)) / dof

28 d_id = tid - (b_id * horizon * dof + h_id * dof)

29 if b_id >= batch_size or h_id >= horizon or d_id

>= dof:

30 return

31 # read weight

32 w = weight [0]

33 b_addrs = b_id * horizon * dof + h_id * dof + d_id

34 # read buffers

35 c_p = pos[b_addrs]

36 target_id = target_idx[b_id]

37 target_id = target_id * dof + d_id

38 target_p = target[target_id]

39 # calculate error

40 c_p = c_p - target_p

41 c_total = w * c_p

42 g_p = 2.0 * w

43 # write cost

44 out_cost[b_addrs] = c_total

45 # write gradient

46 out_grad_p[b_addrs] = g_p

1 class SquaredL2DistFunction(torch.autograd.Function):

2 @staticmethod

3 def forward(

4 ctx ,

5 pos ,

6 target ,

7 target_idx ,

8 weight ,

9 out_cost ,

10 out_gp ,

11 ):

12 wp_device = wp.device_from_torch(pos.device)

13 b, h, dof = pos.shape

14 wp.launch(

15 kernel=forward_l2_warp ,

16 dim=b * h * dof ,

17 inputs =[

18 wp.from_torch(pos.view(-1), dtype=wp.

float32),

19 wp.from_torch(target.view(-1), dtype=

wp.float32),

20 wp.from_torch(target_idx.view(-1),

dtype=wp.int32),

21 wp.from_torch(weight , dtype=wp.float32

),

22 wp.from_torch(out_cost.view(-1), dtype

=wp.float32),

23 wp.from_torch(out_gp.view(-1), dtype=

wp.float32),

24 b,

25 h,

26 dof ,

27 ],

28 device=wp_device ,

29 stream=wp.stream_from_torch(pos.device),

30 )

31 cost = torch.sum(out_cost , dim=-1)

32 ctx.save_for_backward(out_gp)

33 return cost

34 @staticmethod

35 def backward(ctx , grad_out_cost):

36 (p_grad ,) = ctx.saved_tensors

37 p_g = None

38 if ctx.needs_input_grad [0]:

39 p_g = p_grad * grad_out_cost

40 return p_g , None , None , None , None , None , None

(a) Warp kernel in Python (b) Launching kernel from PyTorch

Figure 40: An example of using NVIDIA’sWarp language for writing CUDA kernel is shown in (a), followed
by it’s interface with PyTorch in (b). As shown in line 29 of (b), we execute the warp kernel in the same
CUDA stream as PyTorch’s current stream to enable capture of kernel operations across pyTorch, Warp,
and also custom CUDA kernels. This code was tested on PyTorch 1.13, along with Warp 0.9.0.

We have also developed interfacing code to read kinematic structures (e.g., robots) from URDF and USD.
To make environment configuration easier, we have developed a USD parser that can read obstacles and
the robot directly from a USD stage. This USD parser enables our stack to work inside simulation engines
such as NVIDIA Isaac sim without requiring extensive API integration as we can directly read the robot
and the obstacles from the current USD stage. We provide an example in our code that shows how cuRobo
can update it’s obstacles based on an Isaac Sim world, with dynamic loading of new obstacles and obstacle
pose changes.

To obtain a sphere representation of the robot for collision cost terms, we leverage an existing utility from
NVIDIA’s Isaac sim (sphere-generator). The sphere-generator gives a UI for manually adjusting the gener-
ated spheres to more accurately match the robot’s geometry. In addition, we also develop a sphere approx-
imation algorithm that can fit spheres to a mesh leveraging volume approximation techniques as shown
in Fig. 41. The first technique samples the surface of the mesh evenly. We also develop a second method
that voxelizes the mesh and treats each occupied voxel as a sphere and combines this with surface sampled
spheres. We currently use this technique only for approximating the geometry of objects that are attached
to a gripper during manipulation to enable collision avoidance between a grasped object and the world.
One limitation of this technique is that it works well only when the number of spheres is greater than 100.
We do not use this automatic technique to approximate the robot’s geometry as this can lead to requiring
thousands of spheres, potentially slowing down our pipeline on low-power compute devices such as the
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Figure 41: We illustrate some techniques to fit spheres to a mesh. We show three objects from the YCB
dataset [93] in the third column. The last three columns show different ways to get spheres from a vox-
elization of the mesh. The fourth column projects all occupied voxels to the surface and then takes these
points as surface points, the fifth column only takes voxels that are within the surface of the mesh and uses
the voxel pitch to compute the radius of the spheres. The last column combines fourth and fifth column
spheres to get spheres that are in the volume and also the surface. However this representation does not
cover the full geometry of the object, missing some key details on the surface as seen by cup object in the
last row. We hence only use the voxelization for computing spheres internal to the mesh and combine it
with evenly sampled surface points (surface samples shown in the first column) to get a more accurate
sphere representation in column 2. All approximations shown use 200 spheres per mesh.

NVIDIA Jetson ORIN. In addition, our current implementation of the self collision kernel is limited to 1024
spheres as we leverage warp-wide primitives to find the largest penetration distance.

E Parallelized Compute Kernels

GPUs are specialized for highly parallel computations as they have more transistors devoted to data pro-
cessing compared to caching and flow control. This enables GPUs to hide memory access latencies in com-
pute bottle-necked scenarios by running more parallel compute. A GPU has significantly more instruction
throughput and memory bandwidth that a CPU within a similar power envelope and cost. To efficiently
leverage GPU compute for motion generation, we found the following to be important:

1. Reducing reads and writes to global memory to avoid hitting memory access latency.

2. Skip writing zeros for gradients by keeping track of sparsity. As the optimization converges, most
gradients will go to zero and skipping rewrites of zeros greatly reduces the memory access bottle-
necks in our cost terms.

3. Reducing number of kernels called in an optimization iteration by combining small kernels into a
single larger kernel that does all the work from the small kernels.

4. Using shared memory to share data across a thread block, enabling for-loops to be run in parallel.

5. Leveraging warp-wide operations for computing values across small thread groups such as reduc-
tions and finding the maximum.

We discuss the implementation of some of the key kernels in our framework in the following sections,
starting with our kinematics kernels in Section E.1, followed by our self-collision kernel in Section E.2, our
continuous signed distance kernel in Section E.3, and then our L-BFGS kernel in Section E.4. We then report
compute times for these kernels across compute devices in Section E.5. There are many more kernels in our
library and urge the readers to look at our code for the full set.
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E.1 Kinematics

The role of the forward kinematics function is to map a robot’s joint configuration to the pose of the robot’s
geometry in world coordinates. In cuRobo, we represent the robot’s geometry by spheres and also provide
task space poses for any links thats required in computing costs (e.g , the pose of the end-effector for mo-
tion generation) as shown in Figure 3. To perform gradient-based optimization, we require the backward
mapping to project gradients from the world coordinates for poses and spheres, to the joint configuration
which we call backward kinematics (i.e., this is also called as the Kinematic Jacobian). There are many ways
to represent a robot’s kinematics [94]. We wanted a representation that not only has less number of opera-
tions but also allows for running many operations in parallel. We found representing the transformations
as 4×4 homogeneous transformation matrices to be the best representation as it enables us to run 4 parallel
threads to compute matrix multiplications using shared memory.

The work for forward kinematics consists of computing a 4×4 matrix (which we call 𝑐𝑢𝑚𝑢𝑙 ) per link, which
is then used to compute robot sphere locations for each of the links. We distribute the work per batch across
a number of threads such that the compute resources are well utilized for the matrix multiplications and
sphere transformations. We use four threads per batch in our implementation as shown in Algorithm 7.

For backward kinematics, the 𝑐𝑢𝑚𝑢𝑙 matrix is used to compute the gradients for each of the spheres. Similar
to the above implementation, we distribute the work to multiple threads (16 threads/batch) as shown in
Algorithm 8. The 𝑐𝑢𝑚𝑢𝑙 matrix can either be saved to memory in forward and reused by the backward
kernel, or regenerated by the backward. Reusing the matrix may be slower than regenerating it for large
batch sizes on systems with low memory bandwidth. We hence use a flag to choose between reusing from
memory and recomputing for this kernel. We also write out the transformation matrices that map a joint
value to a matrix in Table 6 and their gradients in Table 7.

E.2 Self-Collision

Our CUDA kernel checks for self-collision for a batch of robot configurations by reading the location of the
spheres in the joint configuration along with the radii. Per batch, we compute distances between all pairs
in the set of spheres 𝑆 that represent the robot and find the pair with the minimum distance.

We map the work per batch to one thread-block so that the parallel reduction can be performed relatively
quickly using intra-warp sharing primitives and shared memory, avoiding atomic accesses altogether. For
distance computations we evaluated two versions. First version maps 32×32 distance computations to a
warp such that the memory accesses are coalesced and we reuse the first loaded sphere for 32 distance
computations. To avoid extra work, this version checks that the first sphere’s index is greater than second
sphere’s index. In doing so, some of the fetches get wasted. The second version, assigns a set of distance
computations (set size being 8, 16, 32, etc) per thread. The assignment consists of sphere index pairs and is
pre-computed. Two spheres are fetched by index per computation. To reduce the fetch overhead, we store
the spheres in shared memory. We use this version in our evaluations and is written in Algorithm 9.

E.3 Signed Distance

We distribute the collision checking work per batch across a number of threads equal to the number of
spheres and horizons. Each thread loads a sphere along with two others from adjacent horizons. For each
of the OBBs, the distance between the sphere and OBB is computed by first transforming the sphere to OBB
coordinate frame and then checking if the sphere is within bounds as it becomes an axis-aligned bounding
box (AABB). If there’s a potential collision, gradient is computed. If not, we check whether a potential
collision is possible between two adjacent time horizons to compute gradients based on the continuous
collision checking algorithm described in Section 3. For inverse kinematics and graph planning, we only
check collisions at discrete timeswhich is written in Algorithm 10. The continuous collision kernel is written
in Algorithm 11 followed by the steps in computing continuous collision distance in Algorithm 12. The flow
of the algorithms are also illustrated in Figure 42.

E.4 L-BFGS

L-BFGS consists of a series of dot products to compute the step direction from the history of gradients and
optimization parameters. We use many threads in one thread-block to perform the product and reduce
(sum-up) the products in parallel. This will work as long as the history is less than 16. The increase in
run-time with batch size will follow a step function as GPUs include multiple SMs that can execute thread-
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1 Thread per Sphere

For loop over objects in sphere environment

If in collision

Batch of Spheres

query sphere

Obstacle Enabled?

Transform Sphere to Obj. Frame

Check collision

sphere in object frame

Compute Closest Point on object to sphere

Compute cost  & gradient

Transform gradient to World Frame

Sum Cost & Gradient

gradient in world frame

Write Cost & Gradient

Sum Cost across Spheres

only when enabled

1 Thread per Sphere

For loop over objects in sphere environment

Batch of Trajectories of Spheres

query sphere at [t-1, t, t+1]

Obstacle Enabled?

Transform Spheres to Obj. Frame

Continuous Collision Algorithm

sphere in object frame

Transform gradient to World Frame

gradient in object frame

Speed Metric

Write Cost & Gradient

Sum Cost & Gradient

gradient in world frame

Sum Cost across Trajectories of Spheres

only when enabled

(a) Sphere-World Signed Distance (b) Sphere-World Continuous Signed Distance

Figure 42: The functions to compute signed distance and gradient between a query sphere and objects in
the world is shown in (a). In (b), a continuous signed distance algorithm is shown for computing signed
distance across a trajectory taken by a query sphere.
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blocks simultaneously (e.g., Jetson Orin AGX includes 16 SMs in 60W mode). Another compute component
in L-BFGS is shifting buffer elements, which when done in parallel and asynchronously requires storing the
values in a temporary buffer and then updating the buffer to avoid data corruption. In our implementation,
the buffer size was ≤32, typical size of a warp in a GPU. Based on this fact and the GPU’s SIMT execution
model, we leverage warp shuffle operation to shift values down, avoiding explicit memory loads/stores for
temporary values [95]. This logic can also be extended to shift larger buffers by taking care of the elements
at the warp boundaries.

E.5 Kernel Timing Benchmark

We profile trajectory optimization for one problem in our evaluation and write the timings for all kernels
in an iteration of the L-BFGS solver in Table 3. Our trajectory optimization first runs 100 iterations with
12 parallel seeds, selects a good time-step discretization value and optimizes 1 seed for upto 300 seeds. We
plot the time it takes for running 1 seed in Table 4.

We compare the kernel time for computing the world collision cost between three different world represen-
tations. First, we represent the world as oriented bounding boxes (OBB) and use our custom CUDA kernel
to compute the collision cost. Second, we represent the world with meshes and use Warp’s BVH based
signed distance function to compute the collision cost. Third, we render depth images of the same world
and build an ESDF map using nvblox and compute collision cost with this map using our custom nvblox
CUDA kernel. We compute times for both 12 TO seeds and 1 TO seed in Table 5. We did not implement
the continuous algorithm for the nvblox kernel and only compute collision cost at the sphere waypoint. We
compute the speed metric for all kernels.

From the compute times, we observe that cuboid collision cost OBB-Collision kernel is much faster (8×)
than using meshes for collision cost. Using a mesh representation also uses more registers (207 vs 77).
The slowdown with the use of meshes was even more significant on the Jetson which has lower number
of SMs and lower memory bandwidth. Our nvblox kernel takes less time than even the cuboid collision
kernel on a RTX 4090. We do not implement the continuous collision algorithm for nvblox, which makes
the comparison weak as the cuboid and mesh kernels are doing more work than nvblox. It’s still promising
see that collision cost computation with nvblox does not add significant overhead compared to other world
representations. We leave implementation of the continuous collision algorithm in nvblox for a future work.

E.6 Profiling CUDA Flags

PyTorch exposes optional CUDA optimizations, some require recompilation of the CUDA kernels such as
fast-mathwhile others only require enabling a flag at runtime such as using tf32 for arithmetic operations.
In addition, pyTorch uses it’s own memory allocator by default. We compared the solve time on our 2600
problems and found no significant difference between cudaMallocAsync memory allocator and pyTorch’s
default allocator. We found that not using tf32 made our approach 15% slower and not using fast-math

made our approach 18% slower. In addition to flags, PyTorch also exposes CUDAGraphs which enables
capturing a sequence of kernel launches on a CUDA device and replaying this captured graph for repeated
calls. This fits very well to numerical optimization, where we call a sequence of functions to map the
optimization variables to cost, followed by computation of step direction and a better set of optimization
variables at every iteration. We found that capturing 25 iterations of our solver in a CUDAGraph and
replaying this capture gave us a 10× speedup compared to calling these kernels native.
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Kernel grid block registers sh. mem.
Time (𝜇s)

4090 Orin MAXN Orin 15W

Tensor Step-FW 84 128 30 [36] 0 2 13 26
Tensor Step-BW 84 128 38 0 1 4 6

Kinematics-FW 48 128 33 [34] 28672 10 44 112
Kinematics-BW 192 128 39 [40] 7168 12 25 34

Self-Collision 1536 400 33 [36] 1280 7 77 208
OBB-Collision 768 128 77 [78] 0 8 64 157

Pose-Cost 12 128 61 [58] 0 2 5 6
Bound-Smooth 42 256 54 0 2 6 9

L-BFGS Step 12 224 48 3728 4 11 13
Line Search 12 224 42 260 3 8 9
Update Best 21 128 16 0 1 3 4

Reduce (4) 0 7 21 28
Elementwise (3) 0 4 28 41
Concatenate 512 21 [18] 0 2 4 6
Jit 21 128 16 0 1 3 3

All (20 kernels) 66 316 662

Table 3: Time taken by kernels in 1 iteration of Trajectory Optimization(12 seeds, 32 timesteps).

Kernel grid block registers sh. mem.
Time (𝜇s)

4090 Orin MAXN Orin 15W

Tensor Step-FW 7 128 30 [36] 0 2 5 6
Tensor Step-BW 7 128 38 0 1 2 2

Kinematics-FW 4 128 33 [34] 28672 9 16 17
Kinematics-BW 16 128 39 [40] 7168 4 7 7

Self-Collision 128 400 33 [36] 1280 2 9 20
OBB-Collision 64 128 77 [78] 0 4 10 19

Pose-Cost 1 128 61 [58] 0 2 3 4
Bound-Smooth 4 256 54 0 2 4 5

L-BFGS Step 1 224 48 3728 4 7 7
Line Search 1 224 42 260 3 5 5
Update Best 2 128 16 0 1 2 2

Reduce (4) 0 7 13 15
Elementwise (3) 0 3 6 7
Concatenate 512 21 [18] 0 1 3 3
Jit 7 [2, 4] 128 16 0 1 2 2

All (20 kernels) 46 94 121

Table 4: Time taken by kernels in 1 iteration of Trajectory Optimization(1 seed, 32 timesteps).

Kernel grid block registers
Time (𝜇s)

4090 Orin MAXN Orin 15W

OBB-Collision (1-TO) 64 128 77 [78] 4 10 19
Mesh-Collision (1-TO) 68 256 207 [210] 27 115 260
nvblox-Collision* (1-TO) 64 128 56 2 - -

OBB-Collision (12-TO) 768 128 77 [78] 8 64 157
Mesh-Collision (12-TO) 340 256 207 [210] 37 353 874
nvblox-Collision* (12-TO) 768 128 56 5 - -

Table 5: World Collision Checking Representation.
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Joint Type Joint Transformation Full Link Transformation

Fixed Joint



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





𝑓0 𝑓1 𝑓2 𝑓3
𝑓4 𝑓5 𝑓6 𝑓7
𝑓8 𝑓9 𝑓10 𝑓11
0 0 0 1



Prismatic X



1 0 0 𝑑𝑥
0 1 0 0
0 0 1 0
0 0 0 1





𝑓0 𝑓1 𝑓2 𝑓0𝑑𝑥 + 𝑓3
𝑓4 𝑓5 𝑓6 𝑓4𝑑𝑥 + 𝑓7
𝑓8 𝑓9 𝑓10 𝑓8𝑑𝑥 + 𝑓11
0 0 0 1



Prismatic Y



1 0 0 0
0 1 0 𝑑𝑦
0 0 1 0
0 0 0 1





𝑓0 𝑓1 𝑓2 𝑓1𝑑𝑦 + 𝑓3
𝑓4 𝑓5 𝑓6 𝑓5𝑑𝑦 + 𝑓7
𝑓8 𝑓9 𝑓10 𝑓9𝑑𝑦 + 𝑓11
0 0 0 1



Prismatic Z



1 0 0 0
0 1 0 0
0 0 1 𝑑𝑧
0 0 0 1





𝑓0 𝑓1 𝑓2 𝑓2𝑑𝑧 + 𝑓3
𝑓4 𝑓5 𝑓6 𝑓6𝑑𝑧 + 𝑓7
𝑓8 𝑓9 𝑓10 𝑓10𝑑𝑧 + 𝑓11
0 0 0 1



Revolute X



1 0 0 0
0 cos𝜃𝑥 − sin𝜃𝑥 0
0 sin𝜃𝑥 cos𝜃𝑥 0
0 0 0 1





𝑓0 𝑓1 cos𝜃𝑥 + 𝑓2 sin𝜃𝑥 −𝑓1 sin𝜃𝑥 + 𝑓2 cos𝜃𝑥 𝑓3
𝑓4 𝑓5 cos𝜃𝑥 + 𝑓6 sin𝜃𝑥 −𝑓5 sin𝜃𝑥 + 𝑓6 cos𝜃𝑥 𝑓7
𝑓8 𝑓9 cos𝜃𝑥 + 𝑓10 sin𝜃𝑥 −𝑓9 sin𝜃𝑥 + 𝑓10 sin𝜃𝑥 𝑓11
0 0 0 1



Revolute Y



cos𝜃𝑦 0 sin𝜃𝑦 0
0 1 0 0

− sin𝜃𝑦 0 cos𝜃𝑦 0
0 0 0 1





𝑓0 cos𝜃𝑦 − 𝑓2 sin𝜃𝑦 𝑓1 𝑓0 sin𝜃𝑦 + 𝑓2 cos𝜃𝑦 𝑓3
𝑓4 cos𝜃𝑦 − 𝑓6 sin𝜃𝑦 𝑓5 𝑓4 sin𝜃𝑦 + 𝑓6 cos𝜃𝑦 𝑓7
𝑓8 cos𝜃𝑦 − 𝑓10 sin𝜃𝑦 𝑓9 𝑓8 sin𝜃𝑦 + 𝑓10 cos𝜃𝑦 𝑓11

0 0 0 1



Revolute Z



cos𝜃𝑧 − sin𝜃𝑧 0 0
sin𝜃𝑧 cos𝜃𝑧 0 0
0 0 1 0
0 0 0 1





𝑓0 cos𝜃𝑧 + 𝑓1 sin𝜃𝑧 −𝑓0 sin𝜃𝑧 + 𝑓1 cos𝜃𝑧 𝑓2 𝑓3
𝑓4 cos𝜃𝑧 + 𝑓5 sin𝜃𝑧 −𝑓4 sin𝜃𝑧 + 𝑓5 cos𝜃𝑧 𝑓6 𝑓7
𝑓8 cos𝜃𝑧 + 𝑓9 sin𝜃𝑧 −𝑓8 sin𝜃𝑧 + 𝑓9 cos𝜃𝑧 𝑓10 𝑓11

0 0 0 1



Table 6: Joint Transformation matrices based on axis of actuation.

Joint Type Position Gradient Rotation Gradient

Prismatic X ®𝑔⊤
𝑑
( ®𝑥) 0

Prismatic Y ®𝑔⊤
𝑑
( ®𝑦) 0

Prismatic Z ®𝑔⊤
𝑑
(®𝑧) 0

Revolute X ®𝑔⊤
𝑑
( ®𝑥 × (®𝑙 − ®𝑑)) ®𝑔⊤𝑟 ⟨[®𝑥]×𝑅𝑝⟩

Revolute Y ®𝑔⊤
𝑑
( ®𝑦 × (®𝑙 − ®𝑑)) ®𝑔⊤𝑟 ⟨[®𝑦]×𝑅𝑝⟩

Revolute Z ®𝑔⊤
𝑑
(®𝑧 × (®𝑙 − ®𝑑)) ®𝑔⊤𝑟 ⟨[®𝑧]×𝑅𝑝⟩

Table 7: Gradient for different joint types, where ⟨·⟩ refers to flattening a matrix to a vector.
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Algorithm 7: Forward Kinematics using 4 threads

Kernel Launch Data: Launch 4 threads per batch, tid = thread id
Input: q∈ R𝐵×𝐷
Output: link pos∈ R𝐵×𝑁×3, link quat∈ R𝐵×𝑁×4, b robot spheres∈ R𝐵×𝑀×4,

b cumul mat∈ R𝐵×𝑁×16
Kinematics Data: fixedTransform∈ R𝐿×4×4, robotSpheres∈ R𝑀×4, linkMap∈ Z𝐿 , jointMap∈ Z𝐿 ,

jointMapType∈ Z𝐿 , storeLinkMap∈ Z𝑁 , linkSphereMap∈ Z𝑀 , B,M,N,L,D
/* B = batch size, M = number of spheres, N = number of links to write, L = number of links, D = number of

actuated joints */

1 extern shared cumul mat ⊲ store cumul matrix in shared memory ∈ R𝑏𝑝𝑏×𝑙×16 (bpb= batches per block)

2 col idx = tid % 4 ⊲ Using four threads per batch index

3 b idx = tid / 4 ⊲ batch index for current thread

4 m base = b idx * L * 16 ⊲ matrix index

5 cumul mat[m base + col idx * 4] = fixedTransform[col idx * 4] ⊲ read a column of the base link matrix

6 if write cumul then
7 b cumul mat[b idx * L * 16 + col idx * 4] = cumul mat[m base + col idx * 4]
8 for l← 1to L do ⊲ loop over links

9 ft base = l * 16
10 in base = m base + linkMap[l] * 16
11 out base = m base + l * 16
12 j type = jointMapType[l] ⊲ read joint type

13 angle = q[b idx * D * jointMap[l]] ⊲ joint articulation value

/* compute local transformation matrix from articulation value using table 6 */

14 j col = joint transform(j type, angle, fixedTransform[ft base + col idx], col idx)
15 for i← 0 to 3 do ⊲ multiply local transform with previous link transform to get global transform

16 cumul mat[out base + i * 4 + col idx] = dot(cumul mat[in base + i * 4], j col)
17 end
18 if write cumul then ⊲ write out transforms for use in backward

19 b cumul mat[b idx * L * 16 + l * 16 + col idx * 4] = cumul mat[out base + col idx*4]
20 end

/* compute sphere positions and write to memory */

21 mpt = (M + 3) / 4 ⊲ spheres per thread in a batch index

22 for i← 0 to mpt do
23 m idx = i * 4 + col idx
24 if m idx ≥ M then
25 break
26 read cumul idx = linkSphereMap[m idx] ⊲ read link index for sphere

27 transform sphere(robotSpheres[sph idx * 4], cumul mat[mat base + read cumul idx * 16],
b robot spheres[b idx + m idx*4])

28 end
/* write link poses to memory */

29 for i← 0 to N do
30 l map = storeLinkMap[i]
31 l base = b idx * N
32 out mbase = m base + l map * 16
33 quat = mat to quat(cumul mat[out mbase])
34 link quat[l base * 4 + i *4 + col idx] = quat[col idx] ⊲ write one value per thread

35 if col idx<3 then
36 link pos[l base * 3 + i* 3 + col idx] = cumul mat[out mbase]
37 end
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Algorithm 8: Backward Kinematics using 16 threads

Kernel Launch Data: Launch 16 threads per batch
Input: grad link pos, grad link quat, grad spheres, global cumul mat
Kinematics Data: robotSpheres∈ R𝑀×4, linkMap∈ Z𝐿 , jointMap∈ Z𝐿 , jointMapType∈ Z𝐿 ,

storeLinkMap∈ Z𝑁 , linkSphereMap∈ Z𝑀 , B,M,N,L,D
Output: grad out q

1 extern shared cumul mat
2 b idx = tid / 16
3 elem idx = tid % 16
4 for l←0 to N do ⊲ read global cumul matrix to shared memory

5 cumul mat[e idx] = global cumul mat[b idx * L * 16 + l * 16 + elem idx]
6 end
7 psum grad = []
8 mpt = (M+15)/16
9 for i in M do ⊲ project sphere gradients to joints

10 m idx = elem idx * mpt + i
11 if m idx ≥ M then
12 break
13 loc grad sph = grad spheres[(b idx * M + m idx) * 4]
14 if loc grad sph == 0 then
15 continue
16 read cumul idx = linkSphereMap[m idx]
17 sphere mem = transform sphere(robotSpheres[m * 4], cumul mat)

/* assuming all joints affecting current sphere has an index below read cumul idx */

18 for j in [read cumul idx, 0] do
19 if linkChainMap[read cumul idx, j] == 0 then
20 continue ⊲ skip links that are not in current serial chain

21 j type = jointMapType[j]
22 psum grad[jointMap[j]] += point backward grad(cumul mat[j * 16], sphere mem,

loc grad sph, j type)
23 end
24 end
25 for i← 0 to N do ⊲ project link gradients to joints

26 g pos = grad link pos[(b idx + i)*3]
27 g quat = grad link quat[(b idx + i)*4]
28 if g pos == 0 && g quat == 0 then
29 continue ⊲ skip computation when gradients are zero

30 l map = storeLinkMap[i]
31 l base = b idx * N
32 out mbase = m base + l map * 16
33 dpt = (l map + 15) / 16 ⊲ number of links per thread

34 for k in [dpt, 0] do
35 j = k * 4 + elem idx
36 if j > l map or j < 0 or linkChainMap[l map, j] == 0 then
37 continue ⊲ skip links that are not in current serial chain

38 j idx = jointMap[j]
39 j type = jointMapType[j]

/* compute gradient using table 7 */

40 psum grad[j idx] += pose backward grad(cumul mat[], l pos, g pos, g quat)
41 end
42 end
43 psum grad = warpReduce(psum grad) ⊲ sum gradient across warp

44 grad out q[b idx * D] = psum grad ⊲ write out gradients in a for loop on thread 0
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Algorithm 9: Robot Self-Collision Checking using sphere-pair threads

Input: b robot spheres∈ R𝑏×𝑀×4
Output: out distance∈ R𝑏 , out grad∈ R𝑏×𝑀×4
Data: sparse index∈ B𝑏×𝑀
Kinematics Data: offsets∈ M, weight∈ R, locations∈ Z𝑀×𝑀
Kernel Launch Data: NDPT, NBPB, B, M, Launch (max pairs + NDPT )/NDPT threads

1 b idx = block id * NBPB
2 nbpb = min(NBPB, B - b idx)
3 if nbpb == 0 then
4 return
5 extern shared rs shared
6 if tid<M then
7 for l∈ [0, 𝑛𝑏𝑝𝑏] do
8 sph = b robot spheres[4 * ((b idx + l) * M + tid)] ⊲ read sphere from global memory

9 sph[3] += offsets[tid] ⊲ add offset to sphere radius

10 rs shared[NBPB * tid + l] = sph ⊲ copy sphere to shared memory

11 end
12 sync threads()
13 indices[NDPT * 2]
14 for i ∈ [0, 𝑁𝐷𝑃𝑇 ∗ 2] do ⊲ read indices of sphere pairs for this thread

15 indices[i] = locations[tid * 2 * NDPT + i]
16 end
17 max d = {d:0, i:-1, j:-1}
18 for (k = 0; k< NDPT; k++) do ⊲ compute sphere pair distances and store the largest in this thread

19 i = indices[k*2]
20 j = indices[k * 2 + 1]
21 for (l = 0; l< nbpb; l++) do
22 sph1 = rs shared[NBPB * i + l]
23 sph2 = rs shared[NBPB * j + l]
24 if sph1.radius ≤ 0.0 or sph2.radius ≤ 0.0 then
25 continue
26 dist = sphere distance(sph1, sph2)
27 if dist > max d.d then
28 max d.d = dist
29 max d.i = i
30 max d.j = j
31 end
32 end
33 w max d = WarpMax(max d) ⊲ Find the largest distance across threads in warp

34 if tid< M then
35 for (l = 0; l< nbpb; l++) do
36 if sparse index[(b idx + l) * M + tid]! = 0 then
37 out grad[(b idx + l) * M * 4 + tid*4] = 0 ⊲ reset all gradients to zero

38 sparse index[(b idx + l) * M + tid] = 0
39 end
40 sync threads()
41 if tid == 0 then
42 for (l = 0; l< nbpb; l++) do
43 max d = best d[l*32]
44 for (i = 1; i< (blockid+31 )/ 32; i++) do
45 if w max d[l * 32 + i].d > max d then
46 max d = w max d[l * 32 + i] ⊲ Find the largest distance across different warps

47 end
48 if max d.d ! = 0 then
49 write distance gradient(max d, b robot spheres[b idx * M * 4], sparse idx[b idx * M])
50 end
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Algorithm 10: World Collision Distance

Kernel Launch Data: Launch 1 thread per sphere
World Model Input: obb bounds, obb pose, obb enable, max nobs, nboxes
Collision Config Input: activation distance, weight
Input: b robot spheres, env idx, B, H, M
Output: out distance, out grad
Data: sparsity idx

1 bid = tid / (H, M)
2 hid = (tid - bid * H * M) / M
3 sid = (tid - bid * H * M - hid * M)
4 sph idx = bid * H * M + hid * M + sid ⊲ compute ids from thread indices

5 sph = b robot spheres[sph idx] ⊲ read sphere from global memory

6 if sph.radius < 0.0 then
7 return ⊲ we use negative sphere radius to deactivate spheres (e.g., spheres for a grasped object)

8 max dist = 0
9 sum grad = 0

10 eta = activation distance
11 sph.radius += eta ⊲ add activation distance to sphere radius

12 start box idx = env idx * max nobs
13 for (box idx = 0; box idx< nboxes; box idx++) do ⊲ loop over obstacles

14 if obb enable[start box idx + box idx] == 0 then
15 continue ⊲ check if obstacle is enabled

16 loc obb pose = obb pose[start box idx + box idx] ⊲ read obstacle pose into register

17 loc sph = transform sphere(loc obb pose, sph) ⊲ transform sphere from world frame to obstacle frame

18 loc bounds = obb bounds[start box idx + box idx] ⊲ read obstacle data

19 loc bounds = loc bounds / 2
20 if check sphere aabb(loc bounds, loc sphere) then ⊲ check if sphere collides with obstacle

21 loc bounds += loc sphere.radius
22 cl = compute sphere gradient(loc bounds, loc sphere, eta)
23 max dist += cl.distance
24 sum grad += project gradient global frame(loc obb pose, cl)
25 end
26 if max dist == 0 then
27 if sparsity idx[sph idx] == 0 then
28 return
29 sparsity idx[sph idx] = 0
30 out grad[sph idx * 4] = 0
31 out distance[sph idx] = 0
32 end
33 max dist = weight * max dist
34 sum grad = weight * sum grad
35 out distance[sph idx] = max dist
36 out grad[sph idx * 4] = sum grad
37 sparsity idx[sph idx] = 1
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Algorithm 11: World Continuous Collision Distance

Kernel Launch Data: Launch 1 thread per sphere
World Model Input: obb bounds, obb pose, obb enable, max nobs, nboxes
Collision Config Input: activation distance, weight, steps, speed dt
Input: b robot spheres, env idx, B, H, M
Output: out distance, out grad
Data: sparsity idx

1 bid = tid / (H, M)
2 hid = (tid - bid * H * M) / M
3 sid = (tid - bid * H * M - hid * M) ⊲ compute ids from thread indices

4 sph1 = b robot spheres[(b addrs + (hid * M ) + sid) * 4] ⊲ read sphere from global memory

5 if sph1.radius < 0.0 then
6 return ⊲ we use negative sphere radius to deactivate spheres (e.g., spheres for a grasped object)

7 max dist = 0
8 sum grad = 0
9 sweep fwd = False

10 sweep bwd = False
11 eta = activation distance
12 dt = speed dt
13 start box idx = env idx * max nobs
14 sph1.radius += eta
15 if hid > 0 then
16 sph0 = b robot spheres[(b addrs + ((hid-1) * M ) + sid) * 4]
17 sph0.radius += eta
18 sph0 distance = sphere distance(sph0, sph1)
19 sph0 len = sph0 distance + sph0.radius * 2
20 if sph0 distance > 0.0 then ⊲ read sphere position in previous time-step

21 sweep bwd = True
22 if hid < horizon -1 then ⊲ read sphere position in next time-step

23 sph2 = b robot spheres[(b addrs + ((hid+1) * M ) + sid) * 4]
24 sph2.radius += eta
25 sph2 distance = sphere distance(sph2, sph1)
26 sph2 len = sph2 distance + sph2.radius * 2
27 if sph2 distance > 0.0 then
28 sweep fwd = True

/* Perform continuous collision computation using Algorithm 12 */

29 max dist, sum grad = compute continuous collision distance()
30 if max dist == 0 then ⊲ check if collision cost is zero

31 if sparsity idx[sph idx] == 0 then
32 return ⊲ use sparsity data to exit early if tensors are already zero

33 sparsity idx[sph idx] = 0
34 out grad[sph idx * 4] = 0
35 out distance[sph idx] = 0
36 max dist = weight * max dist
37 sum grad = weight * sum grad
38 out distance[sph idx] = max dist
39 out grad[sph idx * 4] = sum grad
40 sparsity idx[sph idx] = 1
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Algorithm 12: Continuous Collision Distance

1 for (box idx = 0; box idx< nboxes; box idx++) do ⊲ loop over obstacles

2 if obb enable[start box idx + box idx] == 0 then
3 continue ; ⊲ check if obstacle is enabled

4 in obb pose = obb pose[start box idx + box idx] ; ⊲ read obstacle pose

5 loc sph = transform sphere(in obb pose, sph); ⊲ transform sphere from world frame to obstacle frame

6 loc bounds = obb bounds[start box idx + box idx];
7 loc bounds = loc bounds / 2;
8 if check sphere aabb(loc bounds, loc sphere) then ⊲ check if sphere collides with obstacle

9 loc bounds += loc sphere.radius;
10 cl = compute sphere gradient(loc bounds, loc sphere, eta);
11 max dist += cl.distance;
12 sum grad += project gradient global frame(in obb pose, cl);
13 jump distance = sph1.radius ; ⊲ start with a jump distance of sphere radius

14 else
15 jump distance = compute distance(loc bounds, loc sphere) ; ⊲ compute distance to obstacle

16 end
17 jump d = jump distance;
18 if sweep bwd && jump d < sph0 distance then
19 loc sph0 = transform sphere(in obb pose, sph0);
20 for (j = 0; j< steps; j++) do ⊲ loop over sweep steps

21 if jump d ≥ sph0 distance then
22 break ; ⊲ jump distance is greater than half distance between current and previous time-steps

23 k0 = 1 - jump d / (sph0 len);
24 compute jump distance(loc sph, loc sph0, k0, eta, loc bounds, grad loc bounds,

sum pt, jump d);
25 end
26 end
27 if sweep fwd && jump d < sph2 distance then
28 loc sph2 = transform sphere(in obb pose, sph2);
29 for (j = 0; j< steps; j++) do
30 if jump d ≥ sph2 distance then
31 break ; ⊲ jump distance is greater than half distance between current and next time-steps

32 k0 = 1 - jump d / (sph2 len);
33 compute jump distance(loc sph, loc sph2, k0, eta, loc bounds, grad loc bounds,

sum pt, jump d);
34 end
35 end
36 if sum pt.w > 0 then
37 max dist += sum pt.w;
38 project gradient global frame(in obb mat, sum pt, max grad);
39 end
40 end
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F Changes since ICRA 2023

We have made significant improvements to this work since cuRobo’s publication at ICRA 2023 [96]. We
added jerk minimization to our trajectory optimization as we found large jerks to trigger safety stops on
the real robot and also lead to worse tracking. We also switched from using backward difference to five
point stencil difference for computing derivatives of state from position. This increased the speed at which
we could move the UR10, enabling acceleration, and velocity to reach the robot’s limits. In addition, we
now implicitly account for the zero velocity, acceleration, and jerk at the final timestep and start by dupli-
cating states. This removed overshoot that often happens when using a central difference scheme. All these
changes to our state representation reduced the number of iterations needed to converge by 50%.

We found that our evaluation dataset had goals that were not very close to the start state of the robot. This
led our weights to work only for medium and long range motions. To make our approach work for small
motions, we had to increase the weights for smoothness cost terms. We were unable to find a set of weights
that would work for any length trajectory. To overcome this problem, we added a time-step optimization
step that will re-optimize the trajectory with a dt estimate from an initial trajectory optimization. We also
made changes to the Tesseract planner to closely match the trajectory optimization problem we are trying
to solve. Specifically, we found that Tesseract did not optimize for trajectories that stop at the last timestep.
We hence added velocity constraints to Tesseract’s trajopt implementation, which enabled us to obtain a
cuRobo-like trajectory profile as seen in Fig. 34-(b). This increased the planning time for Tesseract to 5.8
seconds on a desktop PC with an i7-7800x. We upgraded our desktop PC with a more recent CPU, an AMD
Ryzen 9 7950x which reduced Tesseract’s planning time to 2.9 seconds. The upgraded CPU also reduced
our geometric planning time to 20ms. We introduced a procedure to tune weights in Appendix A.8 which
allowed us to solve collision-free IK with 30 IK seeds instead of 100. This retuning of weights also enabled
us to improve on position and rotation accuracy.

We also improved on our CUDA kernels, implementing higher performing versions of the algorithms. We
reduced memory latency by packing vectors with 3 floats into padded float4, enabling our kernels to use
vectorized loads (cuda-blog).

G Author Contributions

Balakumar Sundaralingam led the overall project, designed, and developed the cuRobo library. He ran
evaluations in the paper, including real world experiments and wrote the paper.

Siva Kumar SastryHari led the effort on accelerating compute bottlenecks with high performance CUDA
kernels, contributed to cuRobo library, and provided insights on GPU acceleration that led to design changes
in cuRobo library. He also wrote parts of the paper.

Adam Fishman implemented the evaluator, metrics, and provided a format for loading datasets. He also
evaluated the pybullet-RRTConnect and pybullet-AITStar baselines.

Caelan Garett provided insights on geometric planning and implemented an API to post process path
plans from pddlstream using cuRobo.

Karl VanWyk provided initial implementations of Jacobian computations, discussed cost shaping heuris-
tics to improve trajectory optimization, especially when handling constraints and increasing pose reaching
accuracy.

Valks Blukis implemented the nvblox pyTorch wrapper library and also developed an interface for ren-
dering depth images from ground truth world representations.

AlexanderMillane andHelen Oleynikova implemented the signed distance and closest point functions
in nvblox and exposed CUDA kernels for easy use within cuRobo.

Ankur Handa advised on using MPPI as a sampling-based solver, provided insights on stencil methods
for smoothing higher order derivatives and edited the paper.

Fabio Ramos provided insights on numerical optimization, discussed L-BFGS and sampling-based meth-
ods, and edited the paper.

Nathan Ratliff helped set the research direction, advised on trajectory optimization techniques including
collision cost shaping, provided implementation insights to efficiently compute derivatives, and wrote parts
of the paper.

Dieter Fox advised on the project, helped set the research direction, and provided ideas for experiments.
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H Revision History

For the most recent version of this report, see the PDF from curobo.org. We track revisions made since the
initial arxiv submission in this section.

Arxiv v2

· Changed name from ‘CuRobo’ to ‘cuRobo’.

· Added flow chart illustration of collision checking algorithms (Figure 42).

· Fixed typo in Equation 14.

· Added citations [39, 73].
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